""" MIT License Copyright (c) 2019 Sadeep Jayasumana Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import torch import torch.nn as nn from crfasrnn.filters import SpatialFilter, BilateralFilter from crfasrnn.params import DenseCRFParams class CrfRnn(nn.Module): """ PyTorch implementation of the CRF-RNN module described in the paper: Conditional Random Fields as Recurrent Neural Networks, S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang and P. Torr, ICCV 2015 (https://arxiv.org/abs/1502.03240). """ def __init__(self, num_labels, num_iterations=5, crf_init_params=None): """ Create a new instance of the CRF-RNN layer. Args: num_labels: Number of semantic labels in the dataset num_iterations: Number of mean-field iterations to perform crf_init_params: CRF initialization parameters """ super(CrfRnn, self).__init__() if crf_init_params is None: crf_init_params = DenseCRFParams() self.params = crf_init_params self.num_iterations = num_iterations self._softmax = torch.nn.Softmax(dim=0) self.num_labels = num_labels # -------------------------------------------------------------------------------------------- # --------------------------------- Trainable Parameters ------------------------------------- # -------------------------------------------------------------------------------------------- # Spatial kernel weights self.spatial_ker_weights = nn.Parameter( crf_init_params.spatial_ker_weight * torch.eye(num_labels, dtype=torch.float32) ) # Bilateral kernel weights self.bilateral_ker_weights = nn.Parameter( crf_init_params.bilateral_ker_weight * torch.eye(num_labels, dtype=torch.float32) ) # Compatibility transform matrix self.compatibility_matrix = nn.Parameter( torch.eye(num_labels, dtype=torch.float32) ) def forward(self, image, logits): """ Perform CRF inference. Args: image: Tensor of shape (3, h, w) containing the RGB image logits: Tensor of shape (num_classes, h, w) containing the unary logits Returns: log-Q distributions (logits) after CRF inference """ if logits.shape[0] != 1: raise ValueError("Only batch size 1 is currently supported!") image = image[0] logits = logits[0] spatial_filter = SpatialFilter(image, gamma=self.params.gamma) bilateral_filter = BilateralFilter( image, alpha=self.params.alpha, beta=self.params.beta ) _, h, w = image.shape cur_logits = logits for _ in range(self.num_iterations): # Normalization q_values = self._softmax(cur_logits) # Spatial filtering spatial_out = torch.mm( self.spatial_ker_weights, spatial_filter.apply(q_values).view(self.num_labels, -1), ) # Bilateral filtering bilateral_out = torch.mm( self.bilateral_ker_weights, bilateral_filter.apply(q_values).view(self.num_labels, -1), ) # Compatibility transform msg_passing_out = ( spatial_out + bilateral_out ) # Shape: (self.num_labels, -1) msg_passing_out = torch.mm(self.compatibility_matrix, msg_passing_out).view( self.num_labels, h, w ) # Adding unary potentials cur_logits = msg_passing_out + logits return torch.unsqueeze(cur_logits, 0)