# Tencent is pleased to support the open source community by making TNN available. # # Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import onnx from typing import * from onnx import helper from typing import * import ctypes import src.c2oObject as Node import math def create_custom_node(type_name: Text, inputs: Sequence[Text], outputs: Sequence[Text], attributes: Dict) -> onnx.NodeProto: node = helper.make_node(type_name, inputs, outputs, **attributes) print(format(node)) return node def create_priorbox_attributes(layer) -> Dict: min_sizes = layer.prior_box_param.min_size max_sizes = layer.prior_box_param.max_size # onnx attributes does not support bool type flip = 1 if layer.prior_box_param.flip else 0 clip = 1 if layer.prior_box_param.clip else 0 aspect_ratio_tmp = layer.prior_box_param.aspect_ratio # get aspect ratio aspect_ratios = [1.0] for item in aspect_ratio_tmp: already_exist = False for i in range(len(aspect_ratios)): if math.fabs(item - aspect_ratios[i]) < 1e-6: already_exist = True if already_exist is False: aspect_ratios.append(item) if flip == 1: aspect_ratios.append(1. / item) # get variances variances_tmp: List[float] variances = [] if len(layer.prior_box_param.variance) > 1: assert len(layer.prior_box_param.variance) == 4 variances = layer.prior_box_param.variance elif len(layer.prior_box_param.variance) == 1: variances = layer.prior_box_param.variance else: # set default to 0.1 variances.append(0.1) # get image size img_sizes = [0, 0] if layer.prior_box_param.img_size != 0: img_sizes = [layer.prior_box_param.img_size, layer.prior_box_param.img_size] elif (layer.prior_box_param.img_h != 0) and (layer.prior_box_param.img_w != 0): # be careful the order: [img_w, img_h] img_sizes = [layer.prior_box_param.img_w, layer.prior_box_param.img_h] # get step steps = [0.0, 0.0] if layer.prior_box_param.step != 0: steps = [layer.prior_box_param.step, layer.prior_box_param.step] elif (layer.prior_box_param.step_h != 0) and (layer.prior_box_param.step_w != 0): # be careful the order: [step_w, step_h] steps = [layer.prior_box_param.step_w, layer.prior_box_param.step_h] offset = layer.prior_box_param.offset attributes = { 'min_sizes': min_sizes, 'max_sizes': max_sizes, 'clip': clip, 'flip': flip, 'variances': variances, 'aspect_ratios': aspect_ratios, 'img_sizes': img_sizes, 'steps': steps, 'offset': offset } return attributes def caculate_output_shape(layer, input_shape: List, attributes: Dict) -> List: width = input_shape[0][2] height = input_shape[0][3] aspect_ratios = attributes.get('aspect_ratios') min_sizes = attributes.get('min_sizes') num_priors = len(aspect_ratios) * len(min_sizes) max_sizes = attributes.get('max_sizes') for max_size in max_sizes: if max_size > 0: num_priors = num_priors + 1 return [[1, 2, width * height * num_priors * 4]] def create_priorbox_node(layer, node_name: str, inputs_name: List[str], outputs_name: List[str], inputs_shape: List, ) -> onnx.NodeProto: attributes = create_priorbox_attributes(layer) outputs_shape = caculate_output_shape(layer, inputs_shape, attributes) node = Node.c2oNode(layer, node_name, "PriorBox", inputs_name, outputs_name, inputs_shape, outputs_shape, attributes) return node