from share import * import config import cv2 import einops import numpy as np import torch import random import matplotlib.pyplot as plt from PIL import Image from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from annotator.canny import CannyDetector from cldm.model import create_model, load_state_dict from cldm.ddim_hacked import DDIMSampler apply_canny = CannyDetector() model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict('./models/control_sd15_canny.pth', location='cuda')) model = model.cuda() ddim_sampler = DDIMSampler(model) def process(input_image="test_imgs/bird.png", prompt="bird", a_prompt="best quality, extremely detailed", n_prompt="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", num_samples=4, image_resolution=512, ddim_steps=20, guess_mode=False, strength=1, scale=9.0, seed=-1, eta=0, low_threshold=100, high_threshold=200): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) H, W, C = img.shape detected_map = apply_canny(img, low_threshold, high_threshold) detected_map = HWC3(detected_map) control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() if seed == -1: seed = random.randint(0, 65535) seed_everything(seed) if config.save_memory: model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) if config.save_memory: model.low_vram_shift(is_diffusing=True) model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) if config.save_memory: model.low_vram_shift(is_diffusing=False) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results def arange_imgs(images): fig, axes = plt.subplots(nrows=1, ncols=len(images), figsize=(12, 4)) for i, image in enumerate(images): axes[i].imshow(image) axes[i].axis('off') plt.tight_layout() plt.savefig("test_results/test.png") if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--input_image", type=str, default="test_imgs/bird.png", help="输入图片") parser.add_argument("--prompt", type=str, default="bird") parser.add_argument("--positive_prompt", type=str, default="best quality, extremely detailed") parser.add_argument("--negative_prompt", type=str, default="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality") parser.add_argument("--num_samples", type=int, default=4) parser.add_argument("--image_resolution", type=int, default=512) parser.add_argument("--ddim_steps", type=int, default=20) parser.add_argument("--guess_mode", default=False, action="store_true") parser.add_argument("--strength", type=float, default=1) parser.add_argument("--scale", type=float, default=9) parser.add_argument("--seed", type=int, default=-1) parser.add_argument("--eta", type=float, default=0) parser.add_argument("--low_threshold", type=float, default=100) parser.add_argument("--high_threshold", type=float, default=200) args = parser.parse_args() input_image = np.array(Image.open(args.input_image)) images = process( input_image, prompt=args.prompt, a_prompt=args.positive_prompt, n_prompt=args.negative_prompt, num_samples=args.num_samples, image_resolution=args.image_resolution, ddim_steps=args.ddim_steps, guess_mode=args.guess_mode, strength=args.strength, scale=args.scale, seed=args.seed, eta=args.eta, low_threshold=args.low_threshold, high_threshold=args.high_threshold ) arange_imgs(images)