Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ControlNet_pytorch
Commits
e2696ece
Commit
e2696ece
authored
Nov 22, 2023
by
mashun1
Browse files
controlnet
parents
Pipeline
#643
canceled with stages
Changes
263
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2340 additions
and
0 deletions
+2340
-0
BasicSR/options/train/BasicVSR/train_BasicVSR_REDS.yml
BasicSR/options/train/BasicVSR/train_BasicVSR_REDS.yml
+110
-0
BasicSR/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BDx4.yml
...R/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BDx4.yml
+109
-0
BasicSR/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BIx4.yml
...R/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BIx4.yml
+109
-0
BasicSR/options/train/BasicVSR/train_IconVSR_REDS.yml
BasicSR/options/train/BasicVSR/train_IconVSR_REDS.yml
+113
-0
BasicSR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BDx4.yml
...SR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BDx4.yml
+112
-0
BasicSR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BIx4.yml
...SR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BIx4.yml
+112
-0
BasicSR/options/train/BasicVSRPP/train_BasicVSRPP_REDS.yml
BasicSR/options/train/BasicVSRPP/train_BasicVSRPP_REDS.yml
+111
-0
BasicSR/options/train/ECBSR/train_ECBSR_x2_m4c16_prelu.yml
BasicSR/options/train/ECBSR/train_ECBSR_x2_m4c16_prelu.yml
+143
-0
BasicSR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu.yml
BasicSR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu.yml
+143
-0
BasicSR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu_RGB.yml
...SR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu_RGB.yml
+138
-0
BasicSR/options/train/EDSR/train_EDSR_Lx2.yml
BasicSR/options/train/EDSR/train_EDSR_Lx2.yml
+106
-0
BasicSR/options/train/EDSR/train_EDSR_Lx3.yml
BasicSR/options/train/EDSR/train_EDSR_Lx3.yml
+106
-0
BasicSR/options/train/EDSR/train_EDSR_Lx4.yml
BasicSR/options/train/EDSR/train_EDSR_Lx4.yml
+106
-0
BasicSR/options/train/EDSR/train_EDSR_Mx2.yml
BasicSR/options/train/EDSR/train_EDSR_Mx2.yml
+106
-0
BasicSR/options/train/EDSR/train_EDSR_Mx3.yml
BasicSR/options/train/EDSR/train_EDSR_Mx3.yml
+106
-0
BasicSR/options/train/EDSR/train_EDSR_Mx4.yml
BasicSR/options/train/EDSR/train_EDSR_Mx4.yml
+106
-0
BasicSR/options/train/EDVR/train_EDVRM_woTSA_GAN_TODO.yml
BasicSR/options/train/EDVR/train_EDVRM_woTSA_GAN_TODO.yml
+147
-0
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS.yml
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS.yml
+120
-0
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS_woTSA.yml
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS_woTSA.yml
+117
-0
BasicSR/options/train/EDVR/train_EDVR_M_x4_SR_REDS.yml
BasicSR/options/train/EDVR/train_EDVR_M_x4_SR_REDS.yml
+120
-0
No files found.
Too many changes to show.
To preserve performance only
263 of 263+
files are displayed.
Plain diff
Email patch
BasicSR/options/train/BasicVSR/train_BasicVSR_REDS.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
BasicVSR_REDS
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
auto
# official: 8 GPUs
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSRecurrentDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic/X4
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
test_mode
:
False
io_backend
:
type
:
disk
num_frame
:
15
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/REDS4/GT
dataroot_lq
:
datasets/REDS4/sharp_bicubic
cache_data
:
true
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
BasicVSR
num_feat
:
64
num_block
:
30
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BDx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
BasicVSR_Vimeo90K_BDx4
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
2
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
Vimeo90K
type
:
Vimeo90KRecurrentDataset
dataroot_gt
:
datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq
:
datasets/vimeo90k/BDx4
meta_info_file
:
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
io_backend
:
type
:
disk
num_frame
:
-1
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
flip_sequence
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
Vid4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/Vid4/GT
dataroot_lq
:
datasets/Vid4/BDx4
cache_data
:
True
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
BasicVSR
num_feat
:
64
num_block
:
30
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
true
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSR/train_BasicVSR_Vimeo90K_BIx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
BasicVSR_Vimeo90K_BIx4
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
2
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
Vimeo90K
type
:
Vimeo90KRecurrentDataset
dataroot_gt
:
datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq
:
datasets/vimeo90k/BIx4
meta_info_file
:
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
io_backend
:
type
:
disk
num_frame
:
-1
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
flip_sequence
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
Vid4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/Vid4/GT
dataroot_lq
:
datasets/Vid4/BIx4
cache_data
:
True
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
BasicVSR
num_feat
:
64
num_block
:
30
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
true
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSR/train_IconVSR_REDS.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
IconVSR_REDS
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
2
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSRecurrentDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic/X4
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
test_mode
:
False
io_backend
:
type
:
disk
num_frame
:
15
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/REDS4/GT
dataroot_lq
:
datasets/REDS4/sharp_bicubic
cache_data
:
True
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
IconVSR
num_feat
:
64
num_block
:
30
keyframe_stride
:
5
temporal_padding
:
2
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
edvr_path
:
experiments/pretrained_models/edvr_reds_pretrained_new.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BDx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
IconVSR_Vimeo90K_BDx4
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
2
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
Vimeo90K
type
:
Vimeo90KRecurrentDataset
dataroot_gt
:
datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq
:
datasets/vimeo90k/BDx4
meta_info_file
:
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
io_backend
:
type
:
disk
num_frame
:
-1
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
flip_sequence
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
Vid4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/Vid4/GT
dataroot_lq
:
datasets/Vid4/BDx4
cache_data
:
True
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
IconVSR
num_feat
:
64
num_block
:
30
keyframe_stride
:
5
temporal_padding
:
3
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
edvr_path
:
experiments/pretrained_models/edvr_vimeo90k_pretrained.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
true
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSR/train_IconVSR_Vimeo90K_BIx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
IconVSR_Vimeo90K_BIx4
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
2
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
Vimeo90K
type
:
Vimeo90KRecurrentDataset
dataroot_gt
:
datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq
:
datasets/vimeo90k/BIx4
meta_info_file
:
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
io_backend
:
type
:
disk
num_frame
:
-1
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
flip_sequence
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
Vid4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/Vid4/GT
dataroot_lq
:
datasets/Vid4/BIx4
cache_data
:
True
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
IconVSR
num_feat
:
64
num_block
:
30
keyframe_stride
:
5
temporal_padding
:
3
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
edvr_path
:
experiments/pretrained_models/edvr_vimeo90k_pretrained.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
2e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
300000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
300000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.125
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
true
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/BasicVSRPP/train_BasicVSRPP_REDS.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
train_BasicVSRPP_REDS
model_type
:
VideoRecurrentModel
scale
:
4
num_gpu
:
8
# official: 8 GPUs
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSRecurrentDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
meta_info_file
:
datasets/REDS/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
test_mode
:
False
io_backend
:
type
:
disk
num_frame
:
30
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
1
dataset_enlarge_ratio
:
1
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoRecurrentTestDataset
dataroot_gt
:
datasets/REDS4/GT
dataroot_lq
:
datasets/REDS4/sharp_bicubic
cache_data
:
true
io_backend
:
type
:
disk
num_frame
:
-1
# not needed
# network structures
network_g
:
type
:
BasicVSRPlusPlus
mid_channels
:
64
num_blocks
:
7
is_low_res_input
:
true
spynet_path
:
experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
600000
]
restart_weights
:
[
1
]
eta_min
:
!!float
1e-7
total_iter
:
600000
warmup_iter
:
-1
# no warm up
fix_flow
:
5000
flow_lr_mul
:
0.25
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/ECBSR/train_ECBSR_x2_m4c16_prelu.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
101_train_ECBSR_x2_m4c16_prelu
model_type
:
SRModel
scale
:
2
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
# It is strongly recommended to use lmdb for faster IO speed, especially for small networks
dataroot_gt
:
datasets/DF2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DF2K/DIV2K_train_LR_bicubic_X2_sub
meta_info_file
:
basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
gt_size
:
128
use_hflip
:
true
use_rot
:
true
color
:
y
# data loader
num_worker_per_gpu
:
12
batch_size_per_gpu
:
32
dataset_enlarge_ratio
:
10
prefetch_mode
:
~
# we use multiple validation datasets. The SR benchmark datasets can be download from: https://cv.snu.ac.kr/research/EDSR/benchmark.tar
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set5/HR
dataroot_lq
:
datasets/benchmark/Set5/LR_bicubic/X2
filename_tmpl
:
'
{}x2'
color
:
y
io_backend
:
type
:
disk
val_2
:
name
:
Set14
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set14/HR
dataroot_lq
:
datasets/benchmark/Set14/LR_bicubic/X2
filename_tmpl
:
'
{}x2'
color
:
y
io_backend
:
type
:
disk
val_3
:
name
:
B100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/B100/HR
dataroot_lq
:
datasets/benchmark/B100/LR_bicubic/X2
filename_tmpl
:
'
{}x2'
color
:
y
io_backend
:
type
:
disk
val_4
:
name
:
Urban100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Urban100/HR
dataroot_lq
:
datasets/benchmark/Urban100/LR_bicubic/X2
filename_tmpl
:
'
{}x2'
color
:
y
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
ECBSR
num_in_ch
:
1
num_out_ch
:
1
num_block
:
4
num_channel
:
16
with_idt
:
False
act_type
:
prelu
scale
:
2
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0
optim_g
:
type
:
Adam
lr
:
!!float
5e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
1600000
]
gamma
:
1
total_iter
:
1600000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
1600
# the same as the original setting. # TODO: Can be larger
save_img
:
false
pbar
:
False
metrics
:
psnr
:
type
:
calculate_psnr
crop_border
:
2
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
ssim
:
type
:
calculate_ssim
crop_border
:
2
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
1600
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
100_train_ECBSR_x4_m4c16_prelu
model_type
:
SRModel
scale
:
4
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
# It is strongly recommended to use lmdb for faster IO speed, especially for small networks
dataroot_gt
:
datasets/DF2K/DIV2K_train_HR_sub.lmdb
dataroot_lq
:
datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
meta_info_file
:
basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
filename_tmpl
:
'
{}'
io_backend
:
type
:
lmdb
gt_size
:
256
use_hflip
:
true
use_rot
:
true
color
:
y
# data loader
num_worker_per_gpu
:
12
batch_size_per_gpu
:
32
dataset_enlarge_ratio
:
10
prefetch_mode
:
~
# we use multiple validation datasets. The SR benchmark datasets can be download from: https://cv.snu.ac.kr/research/EDSR/benchmark.tar
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set5/HR
dataroot_lq
:
datasets/benchmark/Set5/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
color
:
y
io_backend
:
type
:
disk
val_2
:
name
:
Set14
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set14/HR
dataroot_lq
:
datasets/benchmark/Set14/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
color
:
y
io_backend
:
type
:
disk
val_3
:
name
:
B100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/B100/HR
dataroot_lq
:
datasets/benchmark/B100/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
color
:
y
io_backend
:
type
:
disk
val_4
:
name
:
Urban100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Urban100/HR
dataroot_lq
:
datasets/benchmark/Urban100/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
color
:
y
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
ECBSR
num_in_ch
:
1
num_out_ch
:
1
num_block
:
4
num_channel
:
16
with_idt
:
False
act_type
:
prelu
scale
:
4
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0
optim_g
:
type
:
Adam
lr
:
!!float
5e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
1600000
]
gamma
:
1
total_iter
:
1600000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
1600
# the same as the original setting. # TODO: Can be larger
save_img
:
false
pbar
:
False
metrics
:
psnr
:
type
:
calculate_psnr
crop_border
:
4
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
ssim
:
type
:
calculate_ssim
crop_border
:
4
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
1600
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/ECBSR/train_ECBSR_x4_m4c16_prelu_RGB.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
100_train_ECBSR_x4_m4c16_prelu_RGB
model_type
:
SRModel
scale
:
4
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
0
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
# It is strongly recommended to use lmdb for faster IO speed, especially for small networks
dataroot_gt
:
datasets/DF2K/DIV2K_train_HR_sub.lmdb
dataroot_lq
:
datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
meta_info_file
:
basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
filename_tmpl
:
'
{}'
io_backend
:
type
:
lmdb
gt_size
:
256
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
12
batch_size_per_gpu
:
32
dataset_enlarge_ratio
:
10
prefetch_mode
:
~
# we use multiple validation datasets. The SR benchmark datasets can be download from: https://cv.snu.ac.kr/research/EDSR/benchmark.tar
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set5/HR
dataroot_lq
:
datasets/benchmark/Set5/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
io_backend
:
type
:
disk
val_2
:
name
:
Set14
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Set14/HR
dataroot_lq
:
datasets/benchmark/Set14/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
io_backend
:
type
:
disk
val_3
:
name
:
B100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/B100/HR
dataroot_lq
:
datasets/benchmark/B100/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
io_backend
:
type
:
disk
val_4
:
name
:
Urban100
type
:
PairedImageDataset
dataroot_gt
:
datasets/benchmark/Urban100/HR
dataroot_lq
:
datasets/benchmark/Urban100/LR_bicubic/X4
filename_tmpl
:
'
{}x4'
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
ECBSR
num_in_ch
:
3
num_out_ch
:
3
num_block
:
4
num_channel
:
16
with_idt
:
False
act_type
:
prelu
scale
:
4
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0
optim_g
:
type
:
Adam
lr
:
!!float
5e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
1600000
]
gamma
:
1
total_iter
:
1600000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
1600
# the same as the original setting. # TODO: Can be larger
save_img
:
false
pbar
:
False
metrics
:
psnr
:
type
:
calculate_psnr
crop_border
:
4
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
ssim
:
type
:
calculate_ssim
crop_border
:
4
test_y_channel
:
true
better
:
higher
# the higher, the better. Default: higher
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
1600
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Lx2.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
204_EDSR_Lx2_f256b32_DIV2K_300k_B16G1_wandb
model_type
:
SRModel
scale
:
2
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X2_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X2_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
96
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx2
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
256
num_block
:
32
upscale
:
2
res_scale
:
0.1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
2
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Lx3.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
205_EDSR_Lx3_f256b32_DIV2K_300k_B16G1_204pretrain_wandb
model_type
:
SRModel
scale
:
3
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X3_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X3_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
144
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx3
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
256
num_block
:
32
upscale
:
3
res_scale
:
0.1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
experiments/204_EDSR_Lx2_f256b32_DIV2K_300k_B16G1_wandb/models/net_g_300000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
3
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Lx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
206_EDSR_Lx4_f256b32_DIV2K_300k_B16G1_204pretrain_wandb
model_type
:
SRModel
scale
:
4
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
192
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx4
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
256
num_block
:
32
upscale
:
4
res_scale
:
0.1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
experiments/204_EDSR_Lx2_f256b32_DIV2K_300k_B16G1_wandb/models/net_g_300000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
4
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Mx2.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
201_EDSR_Mx2_f64b16_DIV2K_300k_B16G1_wandb
model_type
:
SRModel
scale
:
2
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X2_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X2_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
96
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx2
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
64
num_block
:
16
upscale
:
2
res_scale
:
1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
2
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Mx3.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
202_EDSR_Mx3_f64b16_DIV2K_300k_B16G1_201pretrain_wandb
model_type
:
SRModel
scale
:
3
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X3_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X3_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
144
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx3
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
64
num_block
:
16
upscale
:
3
res_scale
:
1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
experiments/201_EDSR_Mx2_f64b16_DIV2K_300k_B16G1_wandb/models/net_g_300000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
3
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDSR/train_EDSR_Mx4.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
203_EDSR_Mx4_f64b16_DIV2K_300k_B16G1_201pretrain_wandb
model_type
:
SRModel
scale
:
4
num_gpu
:
1
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
DIV2K
type
:
PairedImageDataset
dataroot_gt
:
datasets/DIV2K/DIV2K_train_HR_sub
dataroot_lq
:
datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
filename_tmpl
:
'
{}'
io_backend
:
type
:
disk
# (for lmdb)
# type: lmdb
gt_size
:
192
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
6
batch_size_per_gpu
:
16
dataset_enlarge_ratio
:
100
prefetch_mode
:
~
val
:
name
:
Set5
type
:
PairedImageDataset
dataroot_gt
:
datasets/Set5/GTmod12
dataroot_lq
:
datasets/Set5/LRbicx4
io_backend
:
type
:
disk
# network structures
network_g
:
type
:
EDSR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
64
num_block
:
16
upscale
:
4
res_scale
:
1
img_range
:
255.
rgb_mean
:
[
0.4488
,
0.4371
,
0.4040
]
# path
path
:
pretrain_network_g
:
experiments/201_EDSR_Mx2_f64b16_DIV2K_300k_B16G1_wandb/models/net_g_300000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
200000
]
gamma
:
0.5
total_iter
:
300000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
L1Loss
loss_weight
:
1.0
reduction
:
mean
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
4
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDVR/train_EDVRM_woTSA_GAN_TODO.yml
0 → 100644
View file @
e2696ece
# TODO
# general settings
name
:
107_EDVRwoTSA_CBInit_lr1e-4_400k_REDS_SyncBN
model_type
:
EDVRModel
scale
:
4
num_gpu
:
8
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
dataroot_flow
:
~
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
io_backend
:
type
:
disk
num_frame
:
5
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
3
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoTestDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
# change to 'meta_info_REDSofficial4_test_GT' when use the official validation partition
io_backend
:
type
:
disk
cache_data
:
false
num_frame
:
5
padding
:
reflection_circle
# network structures
network_g
:
type
:
EDVR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
128
num_frame
:
5
deformable_groups
:
8
num_extract_block
:
5
num_reconstruct_block
:
40
center_frame_idx
:
~
hr_in
:
false
with_predeblur
:
false
with_tsa
:
false
network_d
:
type
:
VGGStyleDiscriminator
num_in_ch
:
3
num_feat
:
64
input_size
:
256
# path
path
:
pretrain_network_g
:
experiments/101_EDVR_M_x4_SR_REDS_woTSA_600k_B4G8_valREDS4_wandb/models/net_g_600000.pth
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
optim_d
:
type
:
Adam
lr
:
!!float
1e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
MultiStepLR
milestones
:
[
50000
,
100000
,
200000
,
300000
]
gamma
:
0.5
total_iter
:
400000
warmup_iter
:
-1
# no warm up
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
!!float
1e-2
reduction
:
sum
perceptual_opt
:
type
:
PerceptualLoss
layer_weights
:
'
conv5_4'
:
1
# before relu
vgg_type
:
vgg19
use_input_norm
:
true
range_norm
:
false
perceptual_weight
:
1.0
style_weight
:
0
criterion
:
l1
gan_opt
:
type
:
GANLoss
gan_type
:
vanilla
real_label_val
:
1.0
fake_label_val
:
0.0
loss_weight
:
!!float
5e-3
net_d_iters
:
1
net_d_init_iters
:
0
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
104_EDVR_L_x4_SR_REDS_600k_B4G8_valREDS4_103pretrain_wandb
model_type
:
EDVRModel
scale
:
4
num_gpu
:
8
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
dataroot_flow
:
~
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
io_backend
:
type
:
disk
num_frame
:
5
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
3
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoTestDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
# change to 'meta_info_REDSofficial4_test_GT' when use the official validation partition
io_backend
:
type
:
disk
cache_data
:
false
num_frame
:
5
padding
:
reflection_circle
# network structures
network_g
:
ema_decay
:
0.999
type
:
EDVR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
128
num_frame
:
5
deformable_groups
:
8
num_extract_block
:
5
num_reconstruct_block
:
40
center_frame_idx
:
~
hr_in
:
false
with_predeblur
:
false
with_tsa
:
true
# path
path
:
pretrain_network_g
:
experiments/103_EDVR_L_x4_SR_REDS_woTSA_600k_B4G8_valREDS4_wandb/models/net_g_600000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
optim_g
:
type
:
Adam
lr
:
!!float
4e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
50000
,
100000
,
150000
,
150000
,
150000
]
restart_weights
:
[
1
,
0.5
,
0.5
,
0.5
,
0.5
]
eta_min
:
!!float
1e-7
total_iter
:
600000
warmup_iter
:
-1
# no warm up
tsa_iter
:
50000
dcn_lr_mul
:
1
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
sum
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
BasicSR/options/train/EDVR/train_EDVR_L_x4_SR_REDS_woTSA.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
103_EDVR_L_x4_SR_REDS_woTSA_600k_B4G8_valREDS4_wandb
model_type
:
EDVRModel
scale
:
4
num_gpu
:
8
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
dataroot_flow
:
~
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
io_backend
:
type
:
disk
num_frame
:
5
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
3
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoTestDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
# change to 'meta_info_REDSofficial4_test_GT' when use the official validation partition
io_backend
:
type
:
disk
cache_data
:
false
num_frame
:
5
padding
:
reflection_circle
# network structures
network_g
:
ema_decay
:
0.999
type
:
EDVR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
128
num_frame
:
5
deformable_groups
:
8
num_extract_block
:
5
num_reconstruct_block
:
40
center_frame_idx
:
~
hr_in
:
false
with_predeblur
:
false
with_tsa
:
false
# path
path
:
pretrain_network_g
:
~
strict_load_g
:
true
resume_state
:
~
# training settings
train
:
optim_g
:
type
:
Adam
lr
:
!!float
4e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
150000
,
150000
,
150000
,
150000
]
restart_weights
:
[
1
,
0.5
,
0.5
,
0.5
]
eta_min
:
!!float
1e-7
total_iter
:
600000
warmup_iter
:
-1
# no warm up
dcn_lr_mul
:
1
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
sum
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
BasicSR/options/train/EDVR/train_EDVR_M_x4_SR_REDS.yml
0 → 100644
View file @
e2696ece
# general settings
name
:
102_EDVR_M_x4_SR_REDS_600k_B4G8_valREDS4_101pretrain_wandb
model_type
:
EDVRModel
scale
:
4
num_gpu
:
8
# set num_gpu: 0 for cpu mode
manual_seed
:
10
# dataset and data loader settings
datasets
:
train
:
name
:
REDS
type
:
REDSDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
dataroot_flow
:
~
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS_GT.txt
val_partition
:
REDS4
# set to 'official' when use the official validation partition
io_backend
:
type
:
disk
num_frame
:
5
gt_size
:
256
interval_list
:
[
1
]
random_reverse
:
false
use_hflip
:
true
use_rot
:
true
# data loader
num_worker_per_gpu
:
3
batch_size_per_gpu
:
4
dataset_enlarge_ratio
:
200
prefetch_mode
:
~
val
:
name
:
REDS4
type
:
VideoTestDataset
dataroot_gt
:
datasets/REDS/train_sharp
dataroot_lq
:
datasets/REDS/train_sharp_bicubic
meta_info_file
:
basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
# change to 'meta_info_REDSofficial4_test_GT' when use the official validation partition
io_backend
:
type
:
disk
cache_data
:
false
num_frame
:
5
padding
:
reflection_circle
# network structures
network_g
:
type
:
EDVR
num_in_ch
:
3
num_out_ch
:
3
num_feat
:
64
num_frame
:
5
deformable_groups
:
8
num_extract_block
:
5
num_reconstruct_block
:
10
center_frame_idx
:
~
hr_in
:
false
with_predeblur
:
false
with_tsa
:
true
# path
path
:
pretrain_network_g
:
experiments/101_EDVR_M_x4_SR_REDS_woTSA_600k_B4G8_valREDS4_wandb/models/net_g_600000.pth
strict_load_g
:
false
resume_state
:
~
# training settings
train
:
ema_decay
:
0.999
optim_g
:
type
:
Adam
lr
:
!!float
4e-4
weight_decay
:
0
betas
:
[
0.9
,
0.99
]
scheduler
:
type
:
CosineAnnealingRestartLR
periods
:
[
50000
,
100000
,
150000
,
150000
,
150000
]
restart_weights
:
[
1
,
1
,
1
,
1
,
1
]
eta_min
:
!!float
1e-7
total_iter
:
600000
warmup_iter
:
-1
# no warm up
tsa_iter
:
50000
dcn_lr_mul
:
1
# losses
pixel_opt
:
type
:
CharbonnierLoss
loss_weight
:
1.0
reduction
:
sum
# validation settings
val
:
val_freq
:
!!float
5e3
save_img
:
false
metrics
:
psnr
:
# metric name, can be arbitrary
type
:
calculate_psnr
crop_border
:
0
test_y_channel
:
false
# logging settings
logger
:
print_freq
:
100
save_checkpoint_freq
:
!!float
5e3
use_tb_logger
:
true
wandb
:
project
:
~
resume_id
:
~
# dist training settings
dist_params
:
backend
:
nccl
port
:
29500
find_unused_parameters
:
true
Prev
1
…
7
8
9
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment