Commit e2696ece authored by mashun1's avatar mashun1
Browse files

controlnet

parents
Pipeline #643 canceled with stages
name: EDSR_Mx4_f64b16_DIV2K_official
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: EDSR
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
res_scale: 1
img_range: 255.
rgb_mean: [0.4488, 0.4371, 0.4040]
# path
path:
pretrain_network_g: experiments/pretrained_models/EDSR/EDSR_Mx4_f64b16_DIV2K_official-0c287733.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: EDVR_L_REDS_deblur_official
model_type: EDVRModel
scale: 1
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_blur
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: replicate
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: true
with_predeblur: true
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_deblur_REDS_official-ca46bd8c.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_REDS_deblurcomp_official
model_type: EDVRModel
scale: 1
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_blur_comp
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: replicate
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: true
with_predeblur: true
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_deblurcomp_REDS_official-0e988e5c.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_REDS_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_sharp_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_REDS_official-9f5f5039.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_Vimeo90K_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vid4
type: VideoTestDataset
dataroot_gt: datasets/Vid4/GT
dataroot_lq: datasets/Vid4/BIx4
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 7
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_Vimeo90K_official-162b54e4.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_Vimeo90K_SR_official
model_type: EDVRModel
scale: 4
num_gpu: 8 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vimeo90K-Test
type: VideoTestVimeo90KDataset
dataroot_gt: datasets/vimeo90k/vimeo_septuplet/sequences
dataroot_lq: datasets/vimeo90k/vimeo_septuplet_matlabLRx4/sequences
meta_info_file: basicsr/data/meta_info/meta_info_Vimeo90K_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 7
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SR_Vimeo90K_official-162b54e4.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_L_x4_REDS_SRblur_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_blur_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: replicate
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 128
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 40
center_frame_idx: ~
hr_in: false
with_predeblur: true
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_L_x4_SRblur_REDS_official-983d7b8e.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: EDVR_M_x4_SR_REDS_official
model_type: EDVRModel
scale: 4
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: REDS4
type: VideoTestDataset
dataroot_gt: datasets/REDS/train_sharp
dataroot_lq: datasets/REDS/train_sharp_bicubic
meta_info_file: basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
io_backend:
type: disk
cache_data: false
num_frame: 5
padding: reflection_circle
# network structures
network_g:
type: EDVR
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_frame: 5
deformable_groups: 8
num_extract_block: 5
num_reconstruct_block: 10
center_frame_idx: ~
hr_in: false
with_predeblur: false
with_tsa: true
# path
path:
pretrain_network_g: experiments/pretrained_models/EDVR/EDVR_M_x4_SR_REDS_official-32075921.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: false
name: ESRGAN_SRx4_DF2KOST_official
model_type: ESRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: ESRGAN_SRx4_DF2KOST_official
model_type: ESRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: SingleImageDataset
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: SingleImageDataset
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
name: ESRGAN_PSNR_SRx4_DF2K_official
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 23
num_grow_ch: 32
# path
path:
pretrain_network_g: experiments/pretrained_models/ESRGAN/ESRGAN_PSNR_SRx4_DF2K_official-150ff491.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: HiFaceGAN_SR4x_test
model_type: HiFaceGANModel
scale: 1 # HiFaceGAN does not resize lq input
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_gt: # the 2nd test dataset
name: FFHQ_sr4x_val
type: PairedImageDataset
dataroot_gt: datasets/FFHQ_512_gt_val
dataroot_lq: datasets/FFHQ_512_lq_val_sr4x
io_backend:
type: disk
# network structures
network_g:
type: HiFaceGAN
num_in_ch: 3
num_feat: 48
use_vae: false
z_dim: 256 # dummy var
crop_size: 512
#norm_g: 'spectralspadesyncbatch3x3'
#norm_g: 'spectralspadeinstance3x3'
norm_g: 'spectralspadebatch3x3' # 20210519: Use batchnorm for now.
is_train: false # HifaceGAN supports progressive training
# so network architecture depends on it
# path
path:
pretrain_network_g: experiments/HiFaceGAN_SR4x_train_full/models/net_g_latest.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
# More metrics will be supported in the next update
#
# msssim:
# type: calculate_msssim
# crop_border: 4
# test_y_channel: false
# lpips:
# type: calculate_lpips
# crop_border: 4
# test_y_channel: false
# niqe:
# type: calculate_niqe
# crop_border: 4
# num_thread: 8
# fid:
# type: calculate_fid
# crop_border: 0
# test_y_channel: false
# use_bgr_order: true
# face_embedding_distance:
# type: calculate_fed
# crop_border: 0
# test_y_channel: false
# face_landmark_distance:
# type: calculate_lle
# crop_border: 0
# test_y_channel: false
name: HiFaceGAN_generic_test
model_type: HiFaceGANModel
scale: 1 # HiFaceGAN does not resize lq input
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_wild: # the 1st test dataset
name: FFHQ_in_the_wild
type: SingleImageDataset
dataroot_lq: datasets/real-world-lq
io_backend:
type: disk
# network structures
network_g:
type: HiFaceGAN # or SPADEGenerator
num_in_ch: 3
num_feat: 48
use_vae: false
z_dim: 256 # dummy var
crop_size: 512
#norm_g: 'spectralspadesyncbatch3x3'
norm_g: 'spectralspadebatch3x3' # 20210519: Use instance norm for now.
is_train: false # HifaceGAN supports progressive training
# so network architecture depends on it
# path
path:
pretrain_network_g: experiments/pretrained_models/generic/latest_net_G.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: generic # add suffix to saved images, if None, use exp name
# No metrics
name: RCAN_BIX4-official
suffix: ~ # add suffix to saved images
model_type: SRModel
scale: 4
crop_border: ~ # crop border when evaluation. If None, crop the scale pixels
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: val_set5
type: PairedImageDataset
dataroot_gt: ./datasets/val_set5/Set5
dataroot_lq: ./datasets/val_set5/Set5_bicLRx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: val_set14
type: PairedImageDataset
dataroot_gt: ./datasets/val_set14/Set14
dataroot_lq: ./datasets/val_set14/Set14_bicLRx4
io_backend:
type: disk
test_3:
name: div2k100
type: PairedImageDataset
dataroot_gt: ./datasets/DIV2K100/DIV2K_valid_HR
dataroot_lq: ./datasets/DIV2K100/DIV2K_valid_bicLRx4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: RCAN
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_group: 10
num_block: 20
squeeze_factor: 16
upscale: 4
res_scale: 1
img_range: 255.
rgb_mean: [0.4488, 0.4371, 0.4040]
save_img: true
# path
path:
pretrain_network_g: ./experiments/pretrained_models/RCAN/RCAN_BIX4-official.pth
strict_load_g: true
name: 004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb
model_type: SRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb/models/net_g_400000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
name: 002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb
model_type: SRModel
scale: 2
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx2
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx2
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X2
filename_tmpl: '{}x2'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 2
# path
path:
pretrain_network_g: experiments/002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 2
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 2
test_y_channel: false
name: 003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb
model_type: SRModel
scale: 3
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx3
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx3
io_backend:
type: disk
test_3:
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X3
filename_tmpl: '{}x3'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 3
# path
path:
pretrain_network_g: experiments/003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 3
test_y_channel: false
ssim:
type: calculate_ssim
crop_border: 3
test_y_channel: false
# ----------- Commands for running
# ----------- Single GPU
# PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/SRResNet_SRGAN/test_MSRResNet_x4.yml
# general settings
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
# test dataset settings
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3: # the 3rd test dataset
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb/models/net_g_1000000.pth
param_key_g: params
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
better: higher # the higher, the better. Default: higher
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
better: higher
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test_1: # the 1st test dataset
name: Set5
type: SingleImageDataset
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: SingleImageDataset
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb/models/net_g_1000000.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
name: TOF_official
model_type: VideoBaseModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
datasets:
test:
name: Vid4
type: VideoTestDataset
dataroot_gt: datasets/Vid4/GT
dataroot_lq: datasets/Vid4/BIx4up_direct
io_backend:
type: disk
cache_data: false
num_frame: 7
padding: reflection_circle
# network structures
network_g:
type: TOFlow
adapt_official_weights: true
save_img: true
# path
path:
pretrain_network_g: experiments/pretrained_models/TOF/tof_x4_vimeo90k_official-32c9e01f.pth
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr_y: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: true
ssim_y:
type: calculate_ssim
crop_border: 0
test_y_channel: true
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment