# conformer based end-to-end model for VKW challenge ## Standard E2E Results Conformer without speed perpurb and lm * config: conf/train_train_vkw_bidirect_12conformer_hs2048_output256_att4_conv2d_char.yaml * beam: 10 * num of gpu: 8 * num of averaged model: 5 * ctc weight (used for attention rescoring): 0.5 dev set results trained only with training set (785 keywords, 1505 hour train set) | scenario | Precision | Recall | F1 | ATWV | |----------|-----------|----------|--------|--------| | lgv | 0.9281 | 0.6420 | 0.7590 | 0.5183 | | liv | 0.8886 | 0.6515 | 0.7518 | 0.6050 | | stv | 0.9120 | 0.7471 | 0.8213 | 0.6256 | dev set results trained with training set and finetune set (785 keywords, 1505 hour train set + 15 hour finetune set) | scenario | Precision | Recall | F1 | ATWV | |----------|-----------|----------|--------|--------| | lgv | 0.9478 | 0.7311 | 0.8255 | 0.6352 | | liv | 0.9177 | 0.8398 | 0.8770 | 0.7412 | | stv | 0.9320 | 0.8207 | 0.8729 | 0.7120 | test set results trained only with training set (384 keywords, 1505 hour train set) | scenario | Precision | Recall | F1 | ATWV | |----------|-----------|----------|--------|--------| | lgv | 0.6262 | 0.5648 | 0.5939 | 0.5825 | | liv | 0.8797 | 0.6282 | 0.7330 | 0.6061 | | stv | 0.9102 | 0.7221 | 0.8053 | 0.6682 | test set results trained with training set and finetune set (384 keywords, 1505 hour train set + 15 hour finetune set) | scenario | Precision | Recall | F1 | ATWV | |----------|-----------|----------|--------|--------| | lgv | 0.6469 | 0.6276 | 0.6371 | 0.6116 | | liv | 0.9278 | 0.7560 | 0.8331 | 0.6927 | | stv | 0.9434 | 0.8061 | 0.8693 | 0.7275 |