#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0" # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 export NCCL_DEBUG=INFO stage=0 # start from 0 if you need to start from data preparation stop_stage=4 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 # data timit_data=/home/Liangcd/data/timit # path to save preproecssed data # export data=data nj=16 # data_type can be `raw` or `shard`. Typically, raw is used for small dataset, # `shard` is used for large dataset which is over 1k hours, and `shard` is # faster on reading data and training. data_type=raw num_utts_per_shard=1000 train_set=train # Optional train_config # 1. conf/train_transformer.yaml: Standard transformer # 2. conf/train_conformer.yaml: Standard conformer # 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer # 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer # 5. conf/train_conformer_no_pos.yaml: Conformer without relative positional encoding # 6. conf/train_u2++_conformer.yaml: U2++ conformer # 7. conf/train_u2++_transformer.yaml: U2++ transformer train_config=conf/train_transformer.yaml cmvn=true dir=exp/transformer_phn_5k_acc4_bs16 checkpoint= # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt average_num=20 decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring" # choose in [phn] trans_type=phn dict=data/dict/${trans_type}_units.txt . tools/parse_options.sh || exit 1; if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then echo "stage 0: Data preparation" echo "preparing data for TIMIT for ${trans_type} level transcripts" local/timit_data_prep.sh ${timit_data} ${trans_type} || exit 1; local/timit_format_data.sh echo "Finish stage 0" fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then echo "stage 1: compute global cmvn" # compute cmvn tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp data/${train_set}/wav.scp \ --out_cmvn data/${train_set}/global_cmvn echo "Finish stage 1" fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: make train dict" # Make train dict echo "Make a dictionary" mkdir -p $(dirname $dict) echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 tools/text2token.py -s 1 -n 1 --space sil --trans_type ${trans_type} data/${train_set}/text \ | cut -f 2- -d" " | tr " " "\n" | sort | uniq | grep -v -e '^\s*$' | \ awk '{print $0 " " NR+1}' >> ${dict} wc -l ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # echo "Finish stage 2" fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: Prepare data, prepare required format" for x in dev test ${train_set}; do if [ $data_type == "shard" ]; then tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \ --num_threads 16 data/$x/wav.scp data/$x/text \ $(realpath data/$x/shards) data/$x/data.list else tools/make_raw_list.py data/$x/wav.scp data/$x/text \ data/$x/data.list fi done echo "Finish stage 3" fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then mkdir -p $dir # You have to rm `INIT_FILE` manually when you resume or restart a # multi-machine training. INIT_FILE=$dir/ddp_init init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp data/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py rewrite $train_config to $dir/train.yaml with model input # and output dimension, and $dir/train.yaml will be used for inference # and export. for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type $data_type \ --symbol_table $dict \ --train_data data/$train_set/data.list \ --cv_data data/dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 1 \ $cmvn_opts \ --pin_memory } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Please specify decoding_chunk_size for unified streaming and # non-streaming model. The default value is -1, which is full chunk # for non-streaming inference. decoding_chunk_size= ctc_weight=0.5 reverse_weight=0.0 for mode in ${decode_modes}; do { test_dir=$dir/test_${mode} mkdir -p $test_dir python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type $data_type \ --test_data data/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --ctc_weight $ctc_weight \ --reverse_weight $reverse_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} \ --connect_symbol ▁ python tools/compute-wer.py --char=1 --v=1 \ data/test/text $test_dir/text > $test_dir/wer } & done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # compute wer for mode in ${decode_modes}; do for test_set in test; do test_dir=$dir/test_${mode} sed 's:▁: :g' $test_dir/text > $test_dir/text.norm python tools/compute-wer.py --char=1 --v=1 \ data/$test_set/text $test_dir/text.norm > $test_dir/wer done done fi