#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 export NCCL_DEBUG=INFO stage=0 # start from 0 if you need to start from data preparation stop_stage=5 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 nj=16 feat_dir=raw_wav data_type=raw # raw or shard num_utts_per_shard=1000 data_cat=legacy train_set=train train_config=conf/train_conformer.yaml cmvn=true dir=exp/conformer checkpoint= # bpemode (unigram or bpe) nbpe=500 bpemode=unigram # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt average_num=10 decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring" . tools/parse_options.sh || exit 1; if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "stage -1: Data Download" local/download_data.sh # make soft link by yourself if you already have the dataset fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # Data preparation local/prepare_data.sh $data_cat for dset in dev test train; do utils/data/modify_speaker_info.sh --seconds-per-spk-max 180 \ data/${dset}.orig data/${dset} done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # For wav feature, just copy the data. Fbank extraction is done in training mkdir -p $feat_dir for x in ${train_set} dev test; do cp -r data/$x $feat_dir done tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp data/${train_set}/wav.scp \ --out_cmvn $feat_dir/$train_set/global_cmvn fi dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=data/lang_char/${train_set}_${bpemode}${nbpe} echo "dictionary: ${dict}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p data/lang_char/ echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 # we borrowed these code and scripts which are related bpe from ESPnet. cut -f 2- -d" " data/${train_set}/text > data/lang_char/input.txt tools/spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} \ --model_type=${bpemode} --model_prefix=${bpemodel} \ --input_sentence_size=100000000 tools/spm_encode --model=${bpemodel}.model \ --output_format=piece < data/lang_char/input.txt | \ tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # wc -l ${dict} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "Prepare data, prepare required format" if [ ! -f $feat_dir/$train_set/segments ]; then echo "$0: No such file segments" && exit 1; else for x in dev test ${train_set}; do tools/make_raw_list.py --segments $feat_dir/$x/segments \ $feat_dir/$x/wav.scp $feat_dir/$x/text $feat_dir/$x/data.list done fi fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init # You had better rm it manually before you start run.sh on first node. # rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" # The number of gpus runing on each node/machine num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="nccl" # The total number of processes/gpus, so that the master knows # how many workers to wait for. # More details about ddp can be found in # https://pytorch.org/tutorials/intermediate/dist_tuto.html world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp ${feat_dir}/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type $data_type \ --symbol_table $dict \ --bpe_model $bpemodel.model \ --train_data $feat_dir/$train_set/data.list \ --cv_data $feat_dir/dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 8 \ $cmvn_opts \ --pin_memory } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size= ctc_weight=0.5 reverse_weight=0.0 for mode in ${decode_modes}; do { test_dir=$dir/test_${mode} mkdir -p $test_dir python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type $data_type \ --test_data $feat_dir/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --bpe_model $bpemodel.model \ --ctc_weight $ctc_weight \ --reverse_weight $reverse_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} python tools/compute-wer.py --char=1 --v=1 \ $feat_dir/test/text $test_dir/text > $test_dir/wer } & done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Export the best model you want python wenet/bin/export_jit.py \ --config $dir/train.yaml \ --checkpoint $dir/avg_${average_num}.pt \ --output_file $dir/final.zip fi