#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" stage=0 # start from 0 if you need to start from data preparation stop_stage=5 # data data_url=www.openslr.org/resources/12 # use your own data path datadir=/export/data/en-asr-data/OpenSLR # wav data dir wave_data=data # Optional train_config # 1. conf/train_transformer_large.yaml: Standard transformer train_config=conf/train_conformer.yaml checkpoint= cmvn=true do_delta=false dir=exp/sp_spec_aug # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt # maybe you can try to adjust it if you can not get close results as README.md average_num=10 decode_modes="attention_rescoring ctc_greedy_search ctc_prefix_beam_search attention" . tools/parse_options.sh || exit 1; # bpemode (unigram or bpe) nbpe=5000 bpemode=unigram set -e set -u set -o pipefail train_set=train_960 dev_set=dev recog_set="test_clean test_other dev_clean dev_other" if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then echo "stage -1: Data Download" for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do local/download_and_untar.sh ${datadir} ${data_url} ${part} done fi if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then ### Task dependent. You have to make data the following preparation part by yourself. ### But you can utilize Kaldi recipes in most cases echo "stage 0: Data preparation" for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do # use underscore-separated names in data directories. local/data_prep_torchaudio.sh ${datadir}/LibriSpeech/${part} $wave_data/${part//-/_} done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then ### Task dependent. You have to design training and dev sets by yourself. ### But you can utilize Kaldi recipes in most cases echo "stage 1: Feature Generation" mkdir -p $wave_data/train_960 # merge total training data for set in train_clean_100 train_clean_360 train_other_500; do for f in `ls $wave_data/$set`; do cat $wave_data/$set/$f >> $wave_data/train_960/$f done done mkdir -p $wave_data/dev # merge total dev data for set in dev_clean dev_other; do for f in `ls $wave_data/$set`; do cat $wave_data/$set/$f >> $wave_data/$dev_set/$f done done tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp $wave_data/$train_set/wav.scp \ --out_cmvn $wave_data/$train_set/global_cmvn fi dict=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=$wave_data/lang_char/${train_set}_${bpemode}${nbpe} echo "dictionary: ${dict}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p data/lang_char/ echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 # we borrowed these code and scripts which are related bpe from ESPnet. cut -f 2- -d" " $wave_data/${train_set}/text > $wave_data/lang_char/input.txt tools/spm_train --input=$wave_data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 tools/spm_encode --model=${bpemodel}.model --output_format=piece < $wave_data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # wc -l ${dict} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # Prepare wenet required data echo "Prepare data, prepare required format" for x in $dev_set ${recog_set} $train_set ; do tools/make_raw_list.py $wave_data/$x/wav.scp $wave_data/$x/text \ $wave_data/$x/data.list done fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" cmvn_opts= $cmvn && cmvn_opts="--cmvn $wave_data/${train_set}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type raw \ --symbol_table $dict \ --bpe_model ${bpemodel}.model \ --train_data $wave_data/$train_set/data.list \ --cv_data $wave_data/$dev_set/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $num_gpus \ --ddp.rank $i \ --ddp.dist_backend $dist_backend \ --num_workers 1 \ $cmvn_opts \ --pin_memory } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint cmvn_opts= $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn" # TODO, Add model average here mkdir -p $dir/test if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size= ctc_weight=0.5 # Polling GPU id begin with index 0 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') idx=0 for test in $recog_set; do for mode in ${decode_modes}; do { { test_dir=$dir/${test}_${mode} mkdir -p $test_dir gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1]) python wenet/bin/recognize.py --gpu $gpu_id \ --mode $mode \ --config $dir/train.yaml \ --data_type raw \ --dict $dict \ --bpe_model ${bpemodel}.model \ --test_data $wave_data/$test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --result_file $test_dir/text_bpe \ --ctc_weight $ctc_weight \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp tools/spm_decode --model=${bpemodel}.model --input_format=piece \ < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value_tmp paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value_tmp > $test_dir/text python tools/compute-wer.py --char=1 --v=1 \ $wave_data/$test/text $test_dir/text > $test_dir/wer } & ((idx+=1)) if [ $idx -eq $num_gpus ]; then idx=0 fi } done done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Export the best model you want python wenet/bin/export_jit.py \ --config $dir/train.yaml \ --checkpoint $dir/avg_${average_num}.pt \ --output_file $dir/final.zip fi # Optionally, you can add LM and test it with runtime. if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then lm=data/local/lm lexicon=data/local/dict/lexicon.txt mkdir -p $lm mkdir -p data/local/dict # 7.1 Download & format LM which_lm=3-gram.pruned.1e-7.arpa.gz if [ ! -e ${lm}/${which_lm} ]; then wget http://www.openslr.org/resources/11/${which_lm} -P ${lm} fi echo "unzip lm($which_lm)..." gunzip -k ${lm}/${which_lm} -c > ${lm}/lm.arpa echo "Lm saved as ${lm}/lm.arpa" # 7.2 Prepare dict unit_file=$dict bpemodel=$bpemodel # use $dir/words.txt (unit_file) and $dir/train_960_unigram5000 (bpemodel) # if you download pretrained librispeech conformer model cp $unit_file data/local/dict/units.txt if [ ! -e ${lm}/librispeech-lexicon.txt ]; then wget http://www.openslr.org/resources/11/librispeech-lexicon.txt -P ${lm} fi echo "build lexicon..." tools/fst/prepare_dict.py $unit_file ${lm}/librispeech-lexicon.txt \ $lexicon $bpemodel.model echo "lexicon saved as '$lexicon'" # 7.3 Build decoding TLG tools/fst/compile_lexicon_token_fst.sh \ data/local/dict data/local/tmp data/local/lang tools/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1; # 7.4 Decoding with runtime fst_dir=data/lang_test for test in ${recog_set}; do ./tools/decode.sh --nj 6 \ --beam 10.0 --lattice_beam 5 --max_active 7000 --blank_skip_thresh 0.98 \ --ctc_weight 0.5 --rescoring_weight 1.0 --acoustic_scale 1.2 \ --fst_path $fst_dir/TLG.fst \ --dict_path $fst_dir/words.txt \ data/$test/wav.scp data/$test/text $dir/final.zip $fst_dir/units.txt \ $dir/lm_with_runtime_${test} tail $dir/lm_with_runtime_${test}/wer done fi