#!/bin/bash # Copyright 2021 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" stage=0 # start from 0 if you need to start from data preparation stop_stage=5 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 # data # use your own data path, you can contact gigaspeech@speechcolab.orgfor getting data for data information about gigaspeech # the preparation of gigaspeech dataset for wenet can be found https://github.com/SpeechColab/GigaSpeech giga_data_dir=/export/expts6/corpus/data/en-asr-data/16k/GigaSpeech shards_dir=/ssd/nfs06/unified_data/giga_shards # gigaspeech training set set=XL train_set=train_`echo $set |tr 'A-Z' 'a-z'` train_dev=dev recog_set=test # wav data dir data=data nj=16 # Optional train_config # 1. conf/train_transformer.yaml: Standard Conformer # 2. conf/train_transformer_bidecoder.yaml: Bidecoder Conformer train_config=conf/train_conformer_bidecoder.yaml checkpoint= cmvn=false do_delta=false dir=exp/sp_spec_aug # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt # maybe you can try to adjust it if you can not get close results as README.md average_num=3 decode_modes="attention_rescoring ctc_greedy_search" . tools/parse_options.sh || exit 1; # bpemode (unigram or bpe) nbpe=5000 bpemode=unigram set -e set -u set -o pipefail if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then ### Task dependent. You have to make data the following preparation part by yourself. ### But you can utilize Kaldi recipes in most cases echo "stage 0: Data preparation" local/gigaspeech_data_prep.sh --train-subset $set --stage 1 $giga_data_dir $data sed -i "s/\t/ /g" $data/${train_set}/text sed -i "s/\t/ /g" $data/${train_dev}/text sed -i "s/\t/ /g" $data/${recog_set}/text for x in $train_dev $train_set $recog_set; do paste -d " " <(cut -f1 -d " " $data/$x/text) <(cut -f1 -d " " $data/$x/text) > $data/$x/spk2utt cp $data/$x/spk2utt $data/$x/utt2spk tools/fix_data_dir.sh $data/$x done fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then ### Task dependent. You have to design training and dev sets by yourself. echo "stage 1: generate segmented wav.scp and compute cmvn" # the format of wav.segment.scp is: # POD1000000004_S0000000 /GigaSpeech/audio/podcast/P0000/POD1000000004.opus,0.0,10.197 # 0.0 is start time, 10.197 is end time (second) for x in $train_dev $train_set $recog_set; do python tools/segment.py --segments $data/$x/segments \ --input $data/$x/wav.scp \ --output $data/$x/wav.segment.scp done # optional # compute cmvn, perhaps you can sample some segmented examples fron wav.scp for cmvn computation python tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp $data/$train_set/wav.segment.scp \ --out_cmvn $data/$train_set/global_cmvn fi dict=$data/lang_char_$set/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=$data/lang_char_$set/${train_set}_${bpemode}${nbpe} echo "dictionary: ${dict}" if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 2: Dictionary and Json Data Preparation" mkdir -p $data/lang_char_$set/ echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 # we borrowed these code and scripts which are related bpe from ESPnet. cut -f 2- -d" " $data/${train_set}/text > $data/lang_char_$set/input.txt tools/spm_train --input=$data/lang_char_$set/input.txt --vocab_size=${nbpe} \ --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 tools/spm_encode --model=${bpemodel}.model --output_format=piece \ < $data/lang_char_$set/input.txt | \ tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # wc -l ${dict} fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "Making shards, please wait..." RED='\033[0;31m' NOCOLOR='\033[0m' echo -e "It requires ${RED}1.2T ${NOCOLOR}space for $shards_dir, please make sure you have enough space" echo -e "It takes about ${RED}12 ${NOCOLOR}hours with 32 threads" for x in $train_dev $train_set $recog_set; do dst=$shards_dir/$x mkdir -p $dst tools/make_shard_list.py --resample 16000 --num_utts_per_shard 1000 \ --num_threads 32 --segments data/$x/segments \ data/$x/wav.scp data/$x/text \ $(realpath $dst) data/$x/data.list done fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="nccl" # The total number of processes/gpus, so that the master knows # how many workers to wait for. # More details about ddp can be found in # https://pytorch.org/tutorials/intermediate/dist_tuto.html world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp ${feat_dir}/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type "shard" \ --symbol_table $dict \ --bpe_model $bpemodel.model \ --train_data $data/$train_set/data.list \ --cv_data $data/$train_dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 16 \ $cmvn_opts } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint cmvn_opts= $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn" # TODO, Add model average here mkdir -p $dir/test if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size= ctc_weight=0.5 # Polling GPU id begin with index 0 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') idx=0 for test in $recog_set; do for mode in ${decode_modes}; do { { test_dir=$dir/${test}_${mode} mkdir -p $test_dir gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1]) python wenet/bin/recognize.py --gpu $gpu_id \ --mode $mode \ --config $dir/train.yaml \ --data_type "shard" \ --symbol_table $dict \ --bpe_model $bpemodel.model \ --test_data $data/$test/format.data \ --checkpoint $decode_checkpoint \ --beam_size 20 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --result_file $test_dir/text_bpe \ --ctc_weight $ctc_weight \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp tools/spm_decode --model=${bpemodel}.model --input_format=piece \ < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value > $test_dir/text # a raw version wer without refining processs python tools/compute-wer.py --char=1 --v=1 \ $data/$test/text $test_dir/text > $test_dir/wer # for gigaspeech scoring cat $test_dir/text_bpe_key_tmp | sed -e "s/^/(/g" | sed -e "s/$/)/g" > $test_dir/hyp_key paste -d " " $test_dir/text_value $test_dir/hyp_key > $test_dir/hyp paste -d " " <(cut -f2- -d " " $data/$test/text) \ <(cut -f1 -d " " $data/$test/text | \ sed -e "s/^/(/g" | sed -e "s/$/)/g") > $data/$test/ref local/gigaspeech_scoring.py $data/$test/ref $test_dir/hyp $test_dir } & ((idx+=1)) if [ $idx -eq $num_gpus ]; then idx=0 fi } done done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Export the best model you want python wenet/bin/export_jit.py \ --config $dir/train.yaml \ --checkpoint $dir/avg_${average_num}.pt \ --output_file $dir/final.zip fi