#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3" # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 export NCCL_DEBUG=INFO stage=5 # start from 0 if you need to start from data preparation stop_stage=5 # The num of machines(nodes) for multi-machine training, 1 is for one machine. # NFS is required if num_nodes > 1. num_nodes=1 # The rank of each node or machine, which ranges from 0 to `num_nodes - 1`. # You should set the node_rank=0 on the first machine, set the node_rank=1 # on the second machine, and so on. node_rank=0 # The aishell dataset location, please change this to your own path # make sure of using absolute path. DO-NOT-USE relatvie path! data=/data/conformer/train/ data_url=www.openslr.org/resources/33 nj=16 dict=data/dict/lang_char.txt # data_type can be `raw` or `shard`. Typically, raw is used for small dataset, # `shard` is used for large dataset which is over 1k hours, and `shard` is # faster on reading data and training. data_type=raw num_utts_per_shard=1000 train_set=train # Optional train_config # 1. conf/train_transformer.yaml: Standard transformer # 2. conf/train_conformer.yaml: Standard conformer # 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer # 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer # 5. conf/train_u2++_conformer.yaml: U2++ conformer # 6. conf/train_u2++_transformer.yaml: U2++ transformer train_config=conf/train_conformer.yaml cmvn=true dir=exp/conformer checkpoint= # use average_checkpoint will get better result average_checkpoint=false decode_checkpoint=$dir/final.pt average_num=30 decode_modes="attention_rescoring" . tools/parse_options.sh || exit 1; if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Please specify decoding_chunk_size for unified streaming and # non-streaming model. The default value is -1, which is full chunk # for non-streaming inference. decoding_chunk_size= ctc_weight=0.5 reverse_weight=0.0 for mode in ${decode_modes}; do { test_dir=$dir/test_${mode} mkdir -p $test_dir python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type $data_type \ --test_data data/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --ctc_weight $ctc_weight \ --reverse_weight $reverse_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} # The code of computing script below has been executed in the wenet/bin/train.py #python tools/compute-wer.py --char=1 --v=1 \ # data/test/text $test_dir/text > $test_dir/wer } & done wait fi