#!/usr/bin/env bash # This training script is modified from the original run.sh # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3" # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 export NCCL_DEBUG=INFO stage=4 # start from 0 if you need to start from data preparation stop_stage=4 # The num of machines(nodes) for multi-machine training, 1 is for one machine. # NFS is required if num_nodes > 1. num_nodes=1 # The rank of each node or machine, which ranges from 0 to `num_nodes - 1`. # You should set the node_rank=0 on the first machine, set the node_rank=1 # on the second machine, and so on. node_rank=0 # The aishell dataset location, please change this to your own path # make sure of using absolute path. DO-NOT-USE relatvie path! data=/data/conformer/train/ data_url=www.openslr.org/resources/33 dict=data/dict/lang_char.txt # data_type can be `raw` or `shard`. Typically, raw is used for small dataset, # `shard` is used for large dataset which is over 1k hours, and `shard` is # faster on reading data and training. data_type=raw num_utts_per_shard=1000 train_set=train # Optional train_config # 1. conf/train_transformer.yaml: Standard transformer # 2. conf/train_conformer.yaml: Standard conformer # 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer # 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer # 5. conf/train_u2++_conformer.yaml: U2++ conformer # 6. conf/train_u2++_transformer.yaml: U2++ transformer train_config=conf/train_conformer.yaml cmvn=true dir=exp/conformer checkpoint= # use average_checkpoint will get better result average_checkpoint=false decode_checkpoint=$dir/final.pt average_num=30 decode_modes="attention_rescoring" log_dir= . tools/parse_options.sh || exit 1; if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then mkdir -p $dir # You have to rm `INIT_FILE` manually when you resume or restart a # multi-machine training. INIT_FILE=$dir/ddp_init init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="nccl" world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp data/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py rewrite $train_config to $dir/train.yaml with model input # and output dimension, and $dir/train.yaml will be used for inference # and export. for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` test_dir=$dir/test_${decode_modes} python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type $data_type \ --symbol_table $dict \ --train_data data/$train_set/data.list \ --cv_data data/dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 1 \ $cmvn_opts \ --pin_memory \ --val_ref_file data/test/text \ --val_hyp_file $test_dir/text \ --log_dir $log_dir } & done wait fi