import torch import clip import os from PIL import Image from torchvision.datasets import CIFAR100 if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--pt", type=str, help="模型名称") args = parser.parse_args() device = "cuda" if torch.cuda.is_available() else "cpu" if ".pt" in args.pt: model, preprocess = clip.load(f"pretrained_models/{args.pt}", device=device) else: model, preprocess = clip.load(f"{args.pt}", device=device) # Download the dataset cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False) # Prepare the inputs image, class_id = cifar100[3637] image_input = preprocess(image).unsqueeze(0).to(device) text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device) # Calculate features with torch.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) values, indices = similarity[0].topk(5) # Print the result print("\nTop predictions:\n") for value, index in zip(values, indices): print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")