# 论文 CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning https://onlinelibrary.wiley.com/doi/10.1002/advs.202308115 # 模型结构 CIRI-deep模型可有效用于各转录组样本间推断差异剪接环形RNA,拓展了环形RNA的研究范围,为环形RNA研究提供了新的高效分析方法。同时,CIRI-deepA模型可以提供单细胞及空间水平环形RNA的有效解析, ![img](./images/image.png) # 算法原理 CIRI deep通过深度神经网络对circRNA的顺式特征和样本对(总RNA或富含poly(A)的RNA)的RBP表达进行训练。 ![Alt text](./images/image-1.png) # 环境配置 ## Docker(方法一) ``` docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:cirideep docker run -dit --shm-size 80g --network=host --name=CIRI --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /opt/hyhal/:/opt/hyhal/:ro image.sourcefind.cn:5000/dcu/admin/base/custom:cirideep /bin/bash docker exec -it CIRI /bin/bash ``` 安装依赖 ``` pip install ./whl/tensorflow-1.15.1+git06e2e8aa.dtk2404-cp37-cp37m-linux_x86_64.whl pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ``` ## Dockerfile(方法二) ``` docker build -t geneformer:latest . docker run -dit --shm-size 80g --network=host --name=geneformer --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /opt/hyhal/:/opt/hyhal/:ro geneformer:latest /bin/bash docker exec -it CIRI /bin/bash ``` ## anaconda (方法三) 1.创建conda虚拟环境: ``` conda create -n CIRI python=3.7 conda activate CIRI ``` 2.其它依赖库参照requirements.txt安装: ``` pip install ./whl/tensorflow-1.15.1+git06e2e8aa.dtk2404-cp37-cp37m-linux_x86_64.whl pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ``` # 预测 ## 用CIRI-deep进行预测 ``` python CIRIdeep.py predict -geneExp_absmax ./demo/RBPmax_totalRNA.tsv -seqFeature ./demo/cisfeature.tsv -splicing_max ./demo/splicingamount_max.tsv -predict_list ./demo/predict_list.txt -model_path ./models/CIRIdeep.h5 -outdir ./outdir -RBP_dir ./demo/RBPexp_total -splicing_dir ./demo/splicingamount ``` 输出文件在outputdir下 ![Alt text](./images/image3.png) ## 用CIRI-deepA进行预测 ``` python CIRIdeep.py predict -geneExp_absmax ./demo/RBPmax_polyA.tsv -seqFeature ./demo/cisfeature.tsv -predict_list ./demo/predict_list.txt -model_path ./models/CIRIdeepA.h5 -outdir ./outdir -RBP_dir ./demo/RBPexp_polyA --CIRIdeepA ``` 输出文件在outputdir下 ![Alt text](./images/image4.png) # 应用场景 ## 算法类别 ai for science ## 行业 科研 ## 热门应用 科研 教育 医疗 # 源码仓库及问题反馈 http://developer.sourcefind.cn/codes/modelzoo/cirideep.git # 参考资料 ``` git clone https://github.com/gyjames/CIRIdeep.git ```