# This code is modified from C-Eval Project: https://github.com/SJTU-LIT/ceval import os import re from tqdm import tqdm import random import numpy as np import torch from transformers import AutoModelForCausalLM, LlamaTokenizer from transformers import GenerationConfig from evaluator import Evaluator DEFAULT_SYSTEM_PROMPT = """You are a helpful assistant. 你是一个乐于助人的助手。""" class Llama_Evaluator(Evaluator): def __init__(self, choices, k, model_path, device, temperature=0.2, verbose=False): super(Llama_Evaluator, self).__init__(choices, model_path, k) load_type = torch.float16 self.model_path = model_path self.device = device self.verbose = verbose self.tokenizer = LlamaTokenizer.from_pretrained(model_path, legacy=True) self.model = AutoModelForCausalLM.from_pretrained( model_path, load_in_8bit=False, torch_dtype=load_type, low_cpu_mem_usage=True, device_map='auto', trust_remote_code=True) self.generation_config = GenerationConfig( temperature=temperature, top_k=40, top_p=0.9, do_sample=True, num_beams=1, repetition_penalty=1.1, max_new_tokens=20 ) self.sA_id = self.tokenizer.encode("A", add_special_tokens=False)[0] self.sB_id = self.tokenizer.encode("B", add_special_tokens=False)[0] self.sC_id = self.tokenizer.encode("C", add_special_tokens=False)[0] self.sD_id = self.tokenizer.encode("D", add_special_tokens=False)[0] self.A_id = self.tokenizer.encode(":A")[-1] self.B_id = self.tokenizer.encode(":B")[-1] self.C_id = self.tokenizer.encode(":C")[-1] self.D_id = self.tokenizer.encode(":D")[-1] def eval_subject(self, subject_name, test_df, dev_df=None, few_shot=False, cot=False, save_result_dir=None, with_prompt=False, constrained_decoding=False, do_test=False): all_answers = {} if constrained_decoding is True: self.generation_config.output_scores = True self.generation_config.return_dict_in_generate = True self.generation_config.max_new_tokens = 1 self.generation_config.top_p = 1.0 self.generation_config.top_k = 0 correct_num = 0 if save_result_dir: result = [] score = [] if few_shot: if with_prompt: history = self.generate_alpaca2_few_shot_prompt(subject_name, dev_df, cot=cot) else: history = self.generate_llama2_few_shot_prompt(subject_name, dev_df, cot=cot) else: history = '' answers = ['NA'] * len(test_df) if do_test is True else list(test_df['answer']) for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)): question = self.format_example(row, include_answer=False, cot=cot,with_prompt=with_prompt) instruction = question if with_prompt: prompt_template = ( "[INST] <>\n" "{system_prompt}\n" "<>\n\n" "{instruction} [/INST]" ) instruction = prompt_template.format_map({'instruction': instruction,'system_prompt':DEFAULT_SYSTEM_PROMPT}) instruction = history + instruction inputs = self.tokenizer(instruction, return_tensors="pt") generation_output = self.model.generate( input_ids = inputs["input_ids"].to(self.device), attention_mask = inputs['attention_mask'].to(self.device), eos_token_id=self.tokenizer.eos_token_id, pad_token_id=self.tokenizer.pad_token_id, generation_config = self.generation_config ) batch_size, length = inputs.input_ids.shape if constrained_decoding is True: logits = generation_output.scores[0][0] logits = logits.float().cpu().detach() choices1_logits = logits[[self.sA_id,self.sB_id,self.sC_id,self.sD_id]] choices2_logits = logits[[self.A_id,self.B_id,self.C_id,self.D_id]] choicesAll_logits = (choices1_logits + choices2_logits).numpy() assert not (np.any(np.isinf(choicesAll_logits)) or np.any(np.isnan(choicesAll_logits))) ans = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(choicesAll_logits)] response = self.tokenizer.decode([logits.argmax(-1).item()]) else: response = self.tokenizer.decode(generation_output[0, length:], skip_special_tokens=True) ans, direct_extract = self.extract_answer(row, response) if ans == answers[row_index]: correct_num += 1 correct = 1 else: correct = 0 if self.verbose is True: print(f"\n======={str(row_index)}=======") print(f"question: {question}\n") print(f"response: {response}\n") print(f"extracted answer: {ans}") print(f"ground truth: {answers[row_index]} \n") if save_result_dir: result.append(response) score.append(correct) all_answers[str(row_index)] = ans correct_ratio = 100*correct_num/len(answers) if save_result_dir: test_df['model_output'] = result test_df['correctness'] = score test_df.to_csv(os.path.join(save_result_dir, f'{subject_name}_test.csv')) return correct_ratio, all_answers def format_example(self, line, include_answer=True, cot=False, with_prompt=False): example = line['question'] for choice in self.choices: example += f'\n{choice}. {line[f"{choice}"]}' if include_answer: if cot: example += "\n答案:让我们一步一步思考,\n" + \ line["explanation"] + f"\n所以答案是{line['answer']}。\n\n" else: example += '\n答案:' + line["answer"] + '\n\n' else: if with_prompt is False: if cot: example += "\n答案:让我们一步一步思考,\n1." else: example += '\n答案:' else: if cot: example += "\n答案是什么?让我们一步一步思考,\n1." else: example += '\n答案:' return example def generate_llama2_few_shot_prompt(self, subject, dev_df, cot=False): prompt = f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n" k = self.k if self.k == -1: k = dev_df.shape[0] for i in range(k): prompt += self.format_example( dev_df.iloc[i, :], include_answer=True, cot=cot ) return prompt def generate_alpaca2_few_shot_prompt(self, subject, dev_df, cot=False): prompt = f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n" prompt_template = ( "[INST] <>\n" "{system_prompt}\n" "<>\n\n" "{instruction} [/INST]好的,我会结合{subject}相关知识回答" ) prompt = prompt_template.format_map({'instruction':prompt,'system_prompt':DEFAULT_SYSTEM_PROMPT,'subject':subject}) k = self.k if self.k == -1: k = dev_df.shape[0] for i in range(k): line = dev_df.iloc[i, :] q=line['question'] for choice in self.choices: q += f'\n{choice}. {line[f"{choice}"]}' a = line['answer'] prompt += "[INST] "+q+"\n答案:[/INST]"+a+"\n" return prompt def extract_answer(self, line, gen_ans): m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M) if len(m) > 0 and m[-1] in self.choices: return m[-1], True answer_patterns = [ r'([ABCD])是正确的', r'选项([ABCD])正确', r'答案为([ABCD])', r'答案是([ABCD])', r'答案([ABCD])', r'选择([ABCD])', r'答案:([ABCD])', r'选择答案([ABCD])' ] # RE extraction for answer_pattern in answer_patterns: m = re.search(answer_pattern, gen_ans, re.M) if m: answer = m.group(1) return answer, False # only containing one choice-character m = re.findall(r'[ABCD]', gen_ans, re.M) if len(m) >= 1: answer = m[0] return answer, False # only containing one choice-context choices_dict = {} pattern = "" for c in self.choices: choices_dict[str(line[f'{c}'])] = c pattern += re.escape(str(line[f'{c}']))+"|" pattern = pattern[:-1] m = re.findall(pattern, gen_ans, re.M) print("w/ escape:",repr(pattern),gen_ans,(len(m)>=1)) if len(m) >= 1: answer = choices_dict[m[0]] return answer, False return random.choice('ABCD'), False