tools = [ { "name": "track", "description": "追踪指定股票的实时价格", "parameters": { "type": "object", "properties": { "symbol": { "description": "需要追踪的股票代码" } }, "required": ['symbol'] } }, { "name": "text-to-speech", "description": "将文本转换为语音", "parameters": { "type": "object", "properties": { "text": { "description": "需要转换成语音的文本" }, "voice": { "description": "要使用的语音类型(男声、女声等)" }, "speed": { "description": "语音的速度(快、中等、慢等)" } }, "required": ['text'] } } ] system_info = {"role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools} import os import platform from transformers import AutoTokenizer, AutoModel import torch MODEL_PATH = os.environ.get('MODEL_PATH', '../../chatglm3-6b') TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH) DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True) if 'cuda' in DEVICE: # AMD, NVIDIA GPU can use Half Precision model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval() else: # CPU, Intel GPU and other GPU can use Float16 Precision Only model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval() history = [system_info] query = "帮我查询股票10111的价格" response, history = model.chat(tokenizer, query, history=history) print(response)