""" This demo script is designed for interacting with the ChatGLM3-6B in Function, to show Function Call capabilities. """ import os import platform import torch from transformers import AutoTokenizer, AutoModel MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b') TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH) tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True) model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval() os_name = platform.system() clear_command = 'cls' if os_name == 'Windows' else 'clear' stop_stream = False def build_prompt(history): prompt = "欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序" for query, response in history: prompt += f"\n\n用户:{query}" prompt += f"\n\nChatGLM3-6B:{response}" return prompt tools = [ {'name': 'track', 'description': '追踪指定股票的实时价格', 'parameters': { 'type': 'object', 'properties': {'symbol': { 'description': '需要追踪的股票代码' } }, 'required': [] } }, { 'name': '/text-to-speech', 'description': '将文本转换为语音', 'parameters': { 'type': 'object', 'properties': { 'text': { 'description': '需要转换成语音的文本' }, 'voice': { 'description': '要使用的语音类型(男声、女声等)' }, 'speed': { 'description': '语音的速度(快、中等、慢等)' } }, 'required': [] } }, { 'name': '/image_resizer', 'description': '调整图片的大小和尺寸', 'parameters': {'type': 'object', 'properties': { 'image_file': { 'description': '需要调整大小的图片文件' }, 'width': { 'description': '需要调整的宽度值' }, 'height': { 'description': '需要调整的高度值' } }, 'required': [] } }, { 'name': '/foodimg', 'description': '通过给定的食品名称生成该食品的图片', 'parameters': { 'type': 'object', 'properties': { 'food_name': { 'description': '需要生成图片的食品名称' } }, 'required': [] } } ] system_item = { "role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools } def main(): past_key_values, history = None, [system_item] role = "user" global stop_stream print("欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") while True: query = input("\n用户:") if role == "user" else input("\n结果:") if query.strip() == "stop": break if query.strip() == "clear": past_key_values, history = None, [system_item] role = "user" os.system(clear_command) print("欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") continue print("\nChatGLM:", end="") response, history = model.chat(tokenizer, query, history=history, role=role) print(response, end="", flush=True) print("") if isinstance(response, dict): role = "observation" else: role = "user" if __name__ == "__main__": main()