"""Network modules that interface with numerical methods.""" import functools import itertools from typing import Callable, Optional, Tuple import gin import haiku as hk import jax import jax.numpy as jnp from jax_cfd.base import array_utils from jax_cfd.base import boundaries from jax_cfd.base import finite_differences from jax_cfd.base import grids from jax_cfd.base import interpolation from jax_cfd.ml import physics_specifications from jax_cfd.ml import towers import numpy as np def _identity(grid, dt, physics_specs): del grid, dt, physics_specs # unused. return lambda x: x @gin.register def split_to_aligned_field( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, network_offsets: Optional[Tuple[Tuple[float, float], ...]] = None, ): """Returns module that splits inputs along last axis into GridArrayVector.""" del dt # unused. if hasattr(physics_specs, "combo_offsets"): data_offsets = physics_specs.combo_offsets() else: data_offsets = grid.cell_faces if hasattr(physics_specs, "combo_boundaries"): boundary_conditions = physics_specs.combo_boundaries() else: boundary_conditions = tuple( boundaries.periodic_boundary_conditions(grid.ndim) for _ in range(grid.ndim)) network_offsets = network_offsets or data_offsets def process(inputs): split_inputs = array_utils.split_axis(inputs, -1) output = tuple( grids.GridVariable(grids.GridArray(x, offset, grid), bc) for x, offset, bc in zip(split_inputs, network_offsets, boundary_conditions)) output = tuple( interpolation.linear(x, offset) for x, offset in zip(output, data_offsets)) return output return hk.to_module(process)() @gin.configurable() def interpolate_gridvar( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, final_offsets: Optional[Tuple[Tuple[float, float], ...]] = None, process_fn: Optional[Callable] = lambda x: x, # pylint: disable=g-bare-generic ): """Returns module that splits inputs along last axis into GridArrayVector.""" del dt # unused. if hasattr(physics_specs, "combo_offsets"): data_offsets = physics_specs.combo_offsets() else: data_offsets = grid.cell_faces final_offsets = final_offsets or data_offsets def process(inputs): inputs = process_fn(inputs) inputs = tuple( interpolation.linear(x, offset) for x, offset in zip(inputs, final_offsets)) return inputs return hk.to_module(process)() @gin.register def aligned_field_from_split_divergence( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, ): """Returns module that splits inputs along last axis into GridArrayVector.""" del dt, physics_specs # unused. def _shift_offset(offset, axis): return tuple(o + 0.5 if i == axis else o for i, o in enumerate(offset)) flux_offsets = tuple( _shift_offset(o, i) for i in range(grid.ndim) # pylint: disable=g-complex-comprehension for o in grid.cell_faces ) def _to_grid_variables(grid_arrays): # TODO(dkochkov) make boundary conditions configurable. bc = boundaries.periodic_boundary_conditions(grid.ndim) return tuple(grids.GridVariable(array, bc) for array in grid_arrays) def process(inputs): split_inputs = array_utils.split_axis(inputs, -1) split_inputs = tuple(grids.GridArray(x, o, grid) for x, o in zip(split_inputs, flux_offsets)) # below we combine `grid.ndim`-sized sequences of arrays into a tuples. # we do that by iterating over a `grid.ndim`-sized zip of the same iterator. # For example: # a = [1, 2, 3, 4] # tuple(zip(*([iter(a)] * 2))) >>> ((1, 2), (3, 4)) split_inputs = tuple(zip(*[iter(split_inputs)] * grid.ndim)) tensor_inputs = grids.GridArrayTensor(split_inputs) # to compute divergence we need to convert fluxes to GridVariable class. grid_array_field = tuple( -finite_differences.divergence(_to_grid_variables(tensor_inputs[i, :])) for i in range(grid.ndim)) # since divergence removes the boundary conditions, we add them back. return _to_grid_variables(grid_array_field) return hk.to_module(process)() @gin.register def stack_aligned_field_with_neighbors( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, n_neighbors: int = 1, ): """Returns a module that stacks input field with neighbors along channels.""" del dt, physics_specs # unused. shifts = [i for i in np.arange(-n_neighbors, n_neighbors + 1) if i != 0] shifts_and_axis = list(itertools.product(shifts, np.arange(grid.ndim))) shifts_and_axis.append([0, 0]) def process(inputs): inputs = tuple(jnp.expand_dims(x.data, axis=-1) for x in inputs) array = array_utils.concat_along_axis(jax.tree_util.leaves(inputs), axis=-1) arrays = tuple( jnp.roll(array, *shift_and_axis) for shift_and_axis in shifts_and_axis) return array_utils.concat_along_axis(arrays, axis=-1) return hk.to_module(process)() @gin.register def stack_aligned_field( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, ): """Returns a module that stacks GridArrayVector along the last axis.""" del grid, dt, physics_specs # unused. def process(inputs): inputs = tuple(jnp.expand_dims(x.data, axis=-1) for x in inputs) return array_utils.concat_along_axis(jax.tree_util.leaves(inputs), axis=-1) return hk.to_module(process)() @gin.configurable def tower_module( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, tower_factory: towers.TowerFactory, pre_process_module: Callable = _identity, # pylint: disable=g-bare-generic post_process_module: Callable = _identity, # pylint: disable=g-bare-generic num_output_channels: Optional[int] = None, name: Optional[str] = None, ): """Constructs tower module with configured number of output channels.""" pre_process = pre_process_module(grid, dt, physics_specs) post_process = post_process_module(grid, dt, physics_specs) def forward_pass(x): x = pre_process(x) if num_output_channels is None: network = tower_factory(x.shape[-1], grid.ndim) else: network = tower_factory(num_output_channels, grid.ndim) return post_process(network(x)) return hk.to_module(forward_pass)(name=name) @gin.configurable def velocity_corrector_network_w_boundaries( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, tower_factory: towers.TowerFactory, network_offsets: Tuple[Tuple[float, ...], ...], num_output_channels: int, name: Optional[str] = None, process_fn: Optional[Callable] = _identity, # pylint: disable=g-bare-generic ): """Returns a module that computes corrections to the velocity field.""" pre_process = functools.partial( interpolate_gridvar, final_offsets=network_offsets, process_fn=process_fn) post_process = interpolate_gridvar return tower_module( grid=grid, dt=dt, physics_specs=physics_specs, tower_factory=tower_factory, pre_process_module=pre_process, post_process_module=post_process, num_output_channels=num_output_channels, name=name) @gin.register def velocity_corrector_network( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, tower_factory: towers.TowerFactory, name: Optional[str] = None, ): """Returns a module that computes corrections to the velocity field.""" pre_process_module = stack_aligned_field post_process_module = split_to_aligned_field return tower_module( grid=grid, dt=dt, physics_specs=physics_specs, tower_factory=tower_factory, pre_process_module=pre_process_module, post_process_module=post_process_module, num_output_channels=grid.ndim, name=name) @gin.register def flux_corrector_network( grid: grids.Grid, dt: float, physics_specs: physics_specifications.BasePhysicsSpecs, tower_factory: towers.TowerFactory, pre_process_module: Callable = stack_aligned_field, # pylint: disable=g-bare-generic name: Optional[str] = None, ): """Returns a module that computes corrections to the velocity fluxes.""" post_process_module = aligned_field_from_split_divergence num_output_channels = grid.ndim ** 2 return tower_module( grid=grid, dt=dt, physics_specs=physics_specs, tower_factory=tower_factory, pre_process_module=pre_process_module, post_process_module=post_process_module, num_output_channels=num_output_channels, name=name)