# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for jax_cfd.data.xarray_utils.""" from absl.testing import absltest from absl.testing import parameterized import jax from jax_cfd.base import test_util from jax_cfd.data import xarray_utils import numpy as np import xarray class XarrayUtilsTest(test_util.TestCase): """Tests utility functions interacting with xarray.""" @parameterized.parameters( dict(all_dims=('time', 'x', 'y', 'sample'), state_dims=('x', 'y'),), dict(all_dims=('x', 'y', 'z', 'sample'), state_dims=('x', 'z', 'y'),), dict(all_dims=('time', 'x'), state_dims=('x'),), dict(all_dims=('x', 'sample', 'y'), state_dims=('x', 'y'),), dict(all_dims=('x', 'z', 'y'), state_dims=('x', 'y', 'z'),), ) def test_normalize(self, all_dims, state_dims): """Tests that `normalize` returns data with expected shapes and norms.""" self.skipTest("test is sensitive to its random seed") shape_key, value_key = jax.random.split(jax.random.PRNGKey(42), 2) input_shape = jax.random.randint(shape_key, (len(all_dims),), 1, 4) inputs = jax.random.normal(value_key, input_shape) non_state_dims = [dim for dim in all_dims if dim not in state_dims] get_dim_axis_fn = lambda dim: np.where(np.asarray(all_dims) == dim)[0][0] state_axes = [get_dim_axis_fn(dim) for dim in state_dims] # to compute expected values we move state dimensions to the first axes, # divide by the norm and then reshape back. inputs_ordered = np.moveaxis(inputs, state_axes, np.arange(len(state_axes))) vec_shape = (-1,) + inputs_ordered.shape[-len(non_state_dims):] inputs_vec = np.reshape(inputs_ordered, vec_shape) inputs_vec = inputs_vec / np.linalg.norm(inputs_vec, axis=0) normalized = np.reshape(inputs_vec, inputs_ordered.shape) expected = np.moveaxis(normalized, np.arange(len(state_axes)), state_axes) coords = {dim: np.arange(input_shape[i]) for i, dim in enumerate(all_dims)} array = xarray.DataArray(inputs, coords, all_dims) normalized_array = xarray_utils.normalize(array, state_dims) actual = normalized_array.transpose(*all_dims).values self.assertAllClose(expected, actual, atol=1e-6) if __name__ == '__main__': absltest.main()