Commit 5e31fa1f authored by mashun1's avatar mashun1
Browse files

jax-cfd

parents
Pipeline #1015 canceled with stages
# Implicit diffusion direct numerical simulation (DNS) configuration file.
#
# Can be used as base configuration for other models.
# For an example of LES model see `smagorinsky_config.gin`.
# Imports of modules to get access to their configurables.
import jax_cfd.ml.advections
import jax_cfd.ml.decoders
import jax_cfd.ml.diffusions
import jax_cfd.ml.encoders
import jax_cfd.ml.equations
import jax_cfd.ml.forcings
import jax_cfd.ml.interpolations
import jax_cfd.ml.model_builder
import jax_cfd.ml.model_utils
import jax_cfd.ml.optimizer_modules
import jax_cfd.ml.pressures
import jax_cfd.ml.towers
import jax_cfd.ml.viscosities
# Interpolations (lax_wendroff + TVD suitable for 2nd order advection scheme)
C_INTERPOLATION_MODULE = @interpolations.transformed
U_INTERPOLATION_MODULE = @interpolations.linear
transformed.base_interpolation_module = @interpolations.lax_wendroff
transformed.transformation = @interpolations.tvd_limiter_transformation
# Advection (advection is solved explicitly)
CONVECTION_MODULE = @advections.self_advection
advections.self_advection.advection_module = @advections.modular_advection
modular_advection.c_interpolation_module = %C_INTERPOLATION_MODULE
modular_advection.u_interpolation_module = %U_INTERPOLATION_MODULE
# Pressure
PRESSURE_MODULE = @pressures.fast_diagonalization
# Diffusion (diffusion is solved implicitly)
DIFFUSION_MODULE = @diffusions.solve_fast_diag
# Model (note the implicit diffusion)
NS_MODULE = @equations.modular_navier_stokes_model
modular_navier_stokes_model.convection_module = %CONVECTION_MODULE
modular_navier_stokes_model.pressure_module = %PRESSURE_MODULE
modular_navier_stokes_model.equation_solver = @equations.implicit_diffusion_navier_stokes
implicit_diffusion_navier_stokes.diffusion_module = %DIFFUSION_MODULE
# Model specifications
ModularStepModel.advance_module = %NS_MODULE
ModularStepModel.encoder_module = @encoders.aligned_array_encoder
ModularStepModel.decoder_module = @decoders.aligned_array_decoder
model_builder.get_model_cls.model_cls = @ModularStepModel
# Configuration file specifying Smagorinsky LES model.
include 'third_party/py/jax_cfd/ml/models_configs/implicit_diffusion_dns_config.gin'
# Smagorinsky model is equivalent to an implicit diffusion DNS solver with an
# addition of a closure term. We solve it implicitly, together with diffusion.
SMAGORINSKY_CONSTANT = 0.2
DIFFUSION_MODULE = @diffusions.implicit_evm_solve_with_diffusion
implicit_evm_solve_with_diffusion.viscosity_module = @viscosities.eddy_viscosity_model
eddy_viscosity_model.viscosity_model = @viscosities.smagorinsky_viscosity
smagorinsky_viscosity.cs = %SMAGORINSKY_CONSTANT
# Model
equations.implicit_diffusion_navier_stokes.diffusion_module = %DIFFUSION_MODULE
"""Network modules that interface with numerical methods."""
import functools
import itertools
from typing import Callable, Optional, Tuple
import gin
import haiku as hk
import jax
import jax.numpy as jnp
from jax_cfd.base import array_utils
from jax_cfd.base import boundaries
from jax_cfd.base import finite_differences
from jax_cfd.base import grids
from jax_cfd.base import interpolation
from jax_cfd.ml import physics_specifications
from jax_cfd.ml import towers
import numpy as np
def _identity(grid, dt, physics_specs):
del grid, dt, physics_specs # unused.
return lambda x: x
@gin.register
def split_to_aligned_field(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
network_offsets: Optional[Tuple[Tuple[float, float], ...]] = None,
):
"""Returns module that splits inputs along last axis into GridArrayVector."""
del dt # unused.
if hasattr(physics_specs, "combo_offsets"):
data_offsets = physics_specs.combo_offsets()
else:
data_offsets = grid.cell_faces
if hasattr(physics_specs, "combo_boundaries"):
boundary_conditions = physics_specs.combo_boundaries()
else:
boundary_conditions = tuple(
boundaries.periodic_boundary_conditions(grid.ndim)
for _ in range(grid.ndim))
network_offsets = network_offsets or data_offsets
def process(inputs):
split_inputs = array_utils.split_axis(inputs, -1)
output = tuple(
grids.GridVariable(grids.GridArray(x, offset, grid), bc) for x, offset,
bc in zip(split_inputs, network_offsets, boundary_conditions))
output = tuple(
interpolation.linear(x, offset)
for x, offset in zip(output, data_offsets))
return output
return hk.to_module(process)()
@gin.configurable()
def interpolate_gridvar(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
final_offsets: Optional[Tuple[Tuple[float, float], ...]] = None,
process_fn: Optional[Callable] = lambda x: x, # pylint: disable=g-bare-generic
):
"""Returns module that splits inputs along last axis into GridArrayVector."""
del dt # unused.
if hasattr(physics_specs, "combo_offsets"):
data_offsets = physics_specs.combo_offsets()
else:
data_offsets = grid.cell_faces
final_offsets = final_offsets or data_offsets
def process(inputs):
inputs = process_fn(inputs)
inputs = tuple(
interpolation.linear(x, offset)
for x, offset in zip(inputs, final_offsets))
return inputs
return hk.to_module(process)()
@gin.register
def aligned_field_from_split_divergence(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
):
"""Returns module that splits inputs along last axis into GridArrayVector."""
del dt, physics_specs # unused.
def _shift_offset(offset, axis):
return tuple(o + 0.5 if i == axis else o for i, o in enumerate(offset))
flux_offsets = tuple(
_shift_offset(o, i) for i in range(grid.ndim) # pylint: disable=g-complex-comprehension
for o in grid.cell_faces
)
def _to_grid_variables(grid_arrays):
# TODO(dkochkov) make boundary conditions configurable.
bc = boundaries.periodic_boundary_conditions(grid.ndim)
return tuple(grids.GridVariable(array, bc) for array in grid_arrays)
def process(inputs):
split_inputs = array_utils.split_axis(inputs, -1)
split_inputs = tuple(grids.GridArray(x, o, grid)
for x, o in zip(split_inputs, flux_offsets))
# below we combine `grid.ndim`-sized sequences of arrays into a tuples.
# we do that by iterating over a `grid.ndim`-sized zip of the same iterator.
# For example:
# a = [1, 2, 3, 4]
# tuple(zip(*([iter(a)] * 2))) >>> ((1, 2), (3, 4))
split_inputs = tuple(zip(*[iter(split_inputs)] * grid.ndim))
tensor_inputs = grids.GridArrayTensor(split_inputs)
# to compute divergence we need to convert fluxes to GridVariable class.
grid_array_field = tuple(
-finite_differences.divergence(_to_grid_variables(tensor_inputs[i, :]))
for i in range(grid.ndim))
# since divergence removes the boundary conditions, we add them back.
return _to_grid_variables(grid_array_field)
return hk.to_module(process)()
@gin.register
def stack_aligned_field_with_neighbors(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
n_neighbors: int = 1,
):
"""Returns a module that stacks input field with neighbors along channels."""
del dt, physics_specs # unused.
shifts = [i for i in np.arange(-n_neighbors, n_neighbors + 1) if i != 0]
shifts_and_axis = list(itertools.product(shifts, np.arange(grid.ndim)))
shifts_and_axis.append([0, 0])
def process(inputs):
inputs = tuple(jnp.expand_dims(x.data, axis=-1) for x in inputs)
array = array_utils.concat_along_axis(jax.tree_util.leaves(inputs), axis=-1)
arrays = tuple(
jnp.roll(array, *shift_and_axis) for shift_and_axis in shifts_and_axis)
return array_utils.concat_along_axis(arrays, axis=-1)
return hk.to_module(process)()
@gin.register
def stack_aligned_field(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
):
"""Returns a module that stacks GridArrayVector along the last axis."""
del grid, dt, physics_specs # unused.
def process(inputs):
inputs = tuple(jnp.expand_dims(x.data, axis=-1) for x in inputs)
return array_utils.concat_along_axis(jax.tree_util.leaves(inputs), axis=-1)
return hk.to_module(process)()
@gin.configurable
def tower_module(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
tower_factory: towers.TowerFactory,
pre_process_module: Callable = _identity, # pylint: disable=g-bare-generic
post_process_module: Callable = _identity, # pylint: disable=g-bare-generic
num_output_channels: Optional[int] = None,
name: Optional[str] = None,
):
"""Constructs tower module with configured number of output channels."""
pre_process = pre_process_module(grid, dt, physics_specs)
post_process = post_process_module(grid, dt, physics_specs)
def forward_pass(x):
x = pre_process(x)
if num_output_channels is None:
network = tower_factory(x.shape[-1], grid.ndim)
else:
network = tower_factory(num_output_channels, grid.ndim)
return post_process(network(x))
return hk.to_module(forward_pass)(name=name)
@gin.configurable
def velocity_corrector_network_w_boundaries(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
tower_factory: towers.TowerFactory,
network_offsets: Tuple[Tuple[float, ...], ...],
num_output_channels: int,
name: Optional[str] = None,
process_fn: Optional[Callable] = _identity, # pylint: disable=g-bare-generic
):
"""Returns a module that computes corrections to the velocity field."""
pre_process = functools.partial(
interpolate_gridvar, final_offsets=network_offsets, process_fn=process_fn)
post_process = interpolate_gridvar
return tower_module(
grid=grid, dt=dt, physics_specs=physics_specs,
tower_factory=tower_factory, pre_process_module=pre_process,
post_process_module=post_process, num_output_channels=num_output_channels,
name=name)
@gin.register
def velocity_corrector_network(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
tower_factory: towers.TowerFactory,
name: Optional[str] = None,
):
"""Returns a module that computes corrections to the velocity field."""
pre_process_module = stack_aligned_field
post_process_module = split_to_aligned_field
return tower_module(
grid=grid, dt=dt, physics_specs=physics_specs,
tower_factory=tower_factory, pre_process_module=pre_process_module,
post_process_module=post_process_module, num_output_channels=grid.ndim,
name=name)
@gin.register
def flux_corrector_network(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.BasePhysicsSpecs,
tower_factory: towers.TowerFactory,
pre_process_module: Callable = stack_aligned_field, # pylint: disable=g-bare-generic
name: Optional[str] = None,
):
"""Returns a module that computes corrections to the velocity fluxes."""
post_process_module = aligned_field_from_split_divergence
num_output_channels = grid.ndim ** 2
return tower_module(
grid=grid, dt=dt, physics_specs=physics_specs,
tower_factory=tower_factory, pre_process_module=pre_process_module,
post_process_module=post_process_module,
num_output_channels=num_output_channels, name=name)
"""Registry of nonlinearities that can be used in neural networks."""
import gin
import jax
import jax.numpy as jnp
relu = gin.external_configurable(jax.nn.relu)
tanh = gin.external_configurable(jnp.tanh)
softplus = gin.external_configurable(jax.nn.softplus)
swish = gin.external_configurable(jax.nn.swish)
elu = gin.external_configurable(jax.nn.elu)
gelu = gin.external_configurable(jax.nn.gelu)
"""Configurable optimizers from JAX."""
import gin
from jax.example_libraries import optimizers
@gin.configurable
def optimizer(value):
return value
gin.external_configurable(optimizers.adam)
gin.external_configurable(optimizers.momentum)
gin.external_configurable(optimizers.nesterov)
gin.external_configurable(optimizers.exponential_decay)
gin.external_configurable(optimizers.inverse_time_decay)
gin.external_configurable(optimizers.polynomial_decay)
gin.external_configurable(optimizers.piecewise_constant)
# Physics configuration file Navier-Stokes system with Kolmogorov forcing.
import jax_cfd.ml.forcings
import jax_cfd.ml.physics_specifications
FORCING_MODULE = @forcings.kolmogorov_forcing
forcings.kolmogorov_forcing.scale = 1.0
forcings.kolmogorov_forcing.wavenumber = 4
forcings.kolmogorov_forcing.linear_coefficient = -0.1
DENSITY = 1.
VISCOSITY = 0.001
physics_specifications.NavierStokesPhysicsSpecs.density = %DENSITY
physics_specifications.NavierStokesPhysicsSpecs.viscosity = %VISCOSITY
physics_specifications.NavierStokesPhysicsSpecs.forcing_module = %FORCING_MODULE
physics_specifications.get_physics_specs.physics_specs_cls = @NavierStokesPhysicsSpecs
# Physics configuration file for kuramoto sivashinsky equation.
import jax_cfd.ml.physics_specifications
physics_specifications.KsPhysicsSpecs.forcing_module = None
physics_specifications.get_physics_specs.physics_specs_cls = @KsPhysicsSpecs
# Physics configuration file Navier-Stokes system with linear forcing.
import jax_cfd.ml.forcings
import jax_cfd.ml.physics_specifications
FORCING_MODULE = @forcings.linear_forcing
FORCING_SCALE = 0.05
forcings.linear_forcing.scale = %FORCING_SCALE
DENSITY = 1.
VISCOSITY = 0.000665
physics_specifications.NavierStokesPhysicsSpecs.density = %DENSITY
physics_specifications.NavierStokesPhysicsSpecs.viscosity = %VISCOSITY
physics_specifications.NavierStokesPhysicsSpecs.forcing_module = %FORCING_MODULE
physics_specifications.get_physics_specs.physics_specs_cls = @NavierStokesPhysicsSpecs
# Physics configuration file Navier-Stokes system with Kolmogorov forcing.
import jax_cfd.ml.forcings
import jax_cfd.ml.physics_specifications
FORCING_MODULE = @forcings.no_forcing
DENSITY = 1.
VISCOSITY = 0.001
physics_specifications.NavierStokesPhysicsSpecs.density = %DENSITY
physics_specifications.NavierStokesPhysicsSpecs.viscosity = %VISCOSITY
physics_specifications.NavierStokesPhysicsSpecs.forcing_module = %FORCING_MODULE
physics_specifications.get_physics_specs.physics_specs_cls = @NavierStokesPhysicsSpecs
# Physics configuration file Navier-Stokes system with Taylor-green forcing.
import jax_cfd.ml.forcings
import jax_cfd.ml.physics_specifications
FORCING_MODULE = @forcings.taylor_green_forcing
forcings.taylor_green_forcing.scale = 0.05
forcings.taylor_green_forcing.wavenumber = 3
forcings.taylor_green_forcing.linear_coefficient = -0.002
DENSITY = 1.
VISCOSITY = 0.001
physics_specifications.NavierStokesPhysicsSpecs.density = %DENSITY
physics_specifications.NavierStokesPhysicsSpecs.viscosity = %VISCOSITY
physics_specifications.NavierStokesPhysicsSpecs.forcing_module = %FORCING_MODULE
physics_specifications.get_physics_specs.physics_specs_cls = @NavierStokesPhysicsSpecs
"""Modules with PhysicsSpecifications for various equations.
To ensure that all components of the pipeline obtain the expected PhysicsSpecs
all modules (except specializing on a particular equation) must instantiate
PhysicsSpecs objects using `get_physics_specs`, which should be
configured appropriately.
"""
import dataclasses
from typing import Optional
import gin
from jax_cfd.ml import forcings
ForcingModule = forcings.ForcingModule
@gin.configurable
def get_physics_specs(physics_specs_cls=gin.REQUIRED):
"""Returns an instance of `physics_specs_cls`, configured by gin."""
return physics_specs_cls()
@gin.register
@dataclasses.dataclass
class BasePhysicsSpecs:
"""Base class for keeping physical parameters and forcing module."""
forcing_module: Optional[ForcingModule]
@gin.register
@dataclasses.dataclass
class KsPhysicsSpecs(BasePhysicsSpecs):
"""Configurable physical parameters for Kuramoto-Sivashinsky models."""
@gin.register
@dataclasses.dataclass
class NavierStokesPhysicsSpecs(BasePhysicsSpecs):
"""Configurable physical parameters and modules for Navier-Stokes models."""
density: float
viscosity: float
@gin.configurable
@dataclasses.dataclass
class SpectralNavierStokesPhysicsSpecs(BasePhysicsSpecs):
viscosity: float
drag: float
smooth: bool
"""Models for pressure solvers.
All modules are functions that return `pressure_solve` method that has the same
signature as baseline methods e.g. `pressure.solve_fast_diag`.
"""
import functools
from typing import Callable, Optional
import gin
from jax_cfd.base import grids
from jax_cfd.base import pressure
GridArray = grids.GridArray
GridVariable = grids.GridVariable
GridVariableVector = grids.GridVariableVector
PressureSolveFn = Callable[
[GridVariableVector, Optional[GridVariable]], GridArray]
PressureModule = Callable[..., PressureSolveFn]
@gin.register
def fast_diagonalization(grid, dt, physics_specs):
del grid, dt, physics_specs # unused.
return pressure.solve_fast_diag
@gin.register
def conjugate_gradient(grid, dt, physics_specs, atol=1e-5, maxiter=32):
del grid, dt, physics_specs # unused.
return functools.partial(pressure.solve_cg, atol=atol, maxiter=maxiter)
"""Utilities for spatial tiling of periodic convolutions into batch dimensions.
``layout`` tuple indicates how the corresponding spatial dimensions are layed
out in space. In 2D:
- `(1, 1)` indicates no tiling.
- `(4, 2)` indicates 4 x-tiles and 2 y-tiles
- `(16, 8)` indicates 16 x-tiles and 8 y-tiles
Tiling is helpful for getting the highest performance convolutions on TPU. Per
the TPU performance guide [1], batch dimensions on TPUs are tiled to multiples
of 8 or 128. Thus the product of all elements in `layout` should typically be
either 8 or 128.
[1] https://cloud.google.com/tpu/docs/performance-guide.
"""
import functools
from typing import Callable, Sequence, Tuple
import einops
import jax
from jax import lax
import jax.numpy as jnp
Array = jnp.ndarray
def _prod(xs):
# backport of math.prod() from Python 3.8+
result = 1
for x in xs:
result *= x
return result
def _verify_layout(array, layout):
if array.ndim != len(layout) + 2 or array.shape[0] != _prod(layout):
raise ValueError(
f"array shape does not match layout: {array.shape} vs {layout}")
def _layout_to_dict(layout):
return dict(zip(["bx", "by", "bz"], layout))
def _tile_roll(array, layout, shift, axis):
"""Roll along the "tiled" dimension."""
_verify_layout(array, layout)
sizes = _layout_to_dict(layout)
if len(layout) == 1:
array = jnp.roll(array, shift, axis=axis)
elif len(layout) == 2:
array = einops.rearrange(array, "(bx by) ... -> bx by ...", **sizes)
array = jnp.roll(array, shift, axis=axis)
array = einops.rearrange(array, "bx by ... -> (bx by) ...", **sizes)
elif len(layout) == 3:
array = einops.rearrange(array, "(bx by bz) ... -> bx by bz ...", **sizes)
array = jnp.roll(array, shift, axis=axis)
array = einops.rearrange(array, "bx by bz ... -> (bx by bz) ...", **sizes)
else:
raise NotImplementedError
return array
def _halo_pad_1d(array, layout, axis, padding=(1, 1)):
"""Pad for halo-exchange along a single array dimension."""
pad_left, pad_right = padding
spatial_axis = axis + 1
pieces = []
if pad_left:
# Note: importantly, dynamic_slice_in_dim raises an error for out of bounds
# access, which catches the edge case where a single array is insufficient
# padding.
start = array.shape[spatial_axis] - pad_left
input_right = lax.dynamic_slice_in_dim(array, start, pad_left, spatial_axis)
output_left = _tile_roll(input_right, layout, shift=+1, axis=axis)
pieces.append(output_left)
pieces.append(array)
if pad_right:
start = 0
input_left = lax.dynamic_slice_in_dim(array, start, pad_right, spatial_axis)
output_right = _tile_roll(input_left, layout, shift=-1, axis=axis)
pieces.append(output_right)
return jnp.concatenate(pieces, axis=spatial_axis)
@functools.partial(jax.jit, static_argnums=(1, 2,))
def _halo_exchange_pad(array: Array, layout: Tuple[int, ...],
padding: Tuple[Tuple[int, int]]) -> Array:
"""Pad with halo-exchange in N-dimensions."""
_verify_layout(array, layout)
if len(layout) != len(padding):
raise ValueError(f"invalid padding: {padding}")
out = array
for axis, pad in enumerate(padding):
out = _halo_pad_1d(out, layout, axis, pad)
return out
def halo_exchange_pad(
array: Array,
layout: Tuple[int, ...],
padding: Sequence[Tuple[int, int]],
) -> Array:
"""Pad with halo-exchange in N-dimensions."""
return _halo_exchange_pad(
array, layout,
tuple(map(tuple, padding)))
@functools.partial(jax.jit, static_argnums=(1,))
def space_to_batch(array: Array, layout: Tuple[int, ...]) -> Array:
"""Rearrange from space to batch dimensions."""
sizes = _layout_to_dict(layout)
if len(layout) == 1:
path = "(bx x) c -> (bx) x c"
elif len(layout) == 2:
path = "(bx x) (by y) c -> (bx by) x y c"
elif len(layout) == 3:
path = "(bx x) (by y) (bz z) c -> (bx by bz) x y z c"
else:
raise NotImplementedError
return einops.rearrange(array, path, **sizes)
@functools.partial(jax.jit, static_argnums=(1,))
def batch_to_space(array: Array, layout: Tuple[int, ...]) -> Array:
"""Rearrange from batch to space dimensions."""
sizes = _layout_to_dict(layout)
if len(layout) == 1:
path = "(bx) x c -> (bx x) c"
elif len(layout) == 2:
path = "(bx by) x y c -> (bx x) (by y) c"
elif len(layout) == 3:
path = "(bx by bz) x y z c-> (bx x) (by y) (bz z) c"
else:
raise NotImplementedError
return einops.rearrange(array, path, **sizes)
def apply_convolution(
conv: Callable[[Array], Array],
inputs: Array,
layout: Tuple[int, ...],
padding: Sequence[Tuple[int, ...]],
) -> Array:
"""Apply a valid convolution with tiling and periodic boundary conditions.
Args:
conv: function that calculates a convolution with valid boundary conditions
when applied to an array of shape [batch, [spatial dims], channel].
inputs: array of shape [[spatial dims], channel].
layout: tiling layout for implementing the operation.
padding: amount of periodic padding to add before and after each spatial
dimension.
Returns:
Convolved array.
"""
if layout is None:
# TODO(shoyer): replace this with some sensible heuristic
layout = (1,) * len(padding)
tiled = space_to_batch(inputs, layout)
padded = halo_exchange_pad(tiled, layout, padding)
convolved = conv(padded)
output = batch_to_space(convolved, layout)
return output
"""Methods for time integration of first order differential equations."""
import gin
import haiku as hk
import jax
# TODO(dkochkov) Include other integrators such as DP; RK methods;
# TODO(dkochkov) Add option to include input as in funcutils.trajectory.
@gin.register
def euler_integrator(
derivative_module,
initial_state,
dt,
num_steps,
):
"""Integrates ode defined by `derivative_module` using euler method.
Args:
derivative_module: hk.Module that computes time derivative.
initial_state: initial state for time integration.
dt: time step.
num_steps: number time steps `dt` to integrate for.
Returns:
final state at time `t + num_steps * dt` and `dt` spaced trajectory.
"""
def _single_step(state, _):
deriv = derivative_module(state)
next_state = jax.tree_util.tree_map(lambda x, dxdt: x + dt * dxdt, state, deriv)
return next_state, next_state
return hk.scan(_single_step, initial_state, None, num_steps)
"""Definitions of towers (neural networks based on multioke CNN layers)."""
import functools
from typing import Any, Callable, List, Optional, Tuple, Union
import gin
import jax
import haiku as hk
from jax_cfd.ml import layers
from jax_cfd.ml import nonlinearities
Array = layers.Array
ConvModule = Callable[..., Any]
ScaleFn = Callable[[Array, List[int]], Array]
TowerFactory = Callable[..., Any]
PERIODIC_CONV_MODULES = {
1: layers.PeriodicConv1D,
2: layers.PeriodicConv2D,
3: layers.PeriodicConv3D}
PERIODIC_CONV_TRANSPOSE_MODULES = {
1: layers.PeriodicConvTranspose1D,
2: layers.PeriodicConvTranspose2D,
3: layers.PeriodicConvTranspose3D}
@gin.register
def periodic_convolution(
output_channels: int,
kernel_shape: Tuple[int, ...],
ndim: int,
**kwargs
):
"""Returns PeriodicConv module with specified parameters."""
return PERIODIC_CONV_MODULES[ndim](output_channels, kernel_shape, **kwargs)
@gin.register
def periodic_transpose_convolution(
output_channels: int,
kernel_shape: Tuple[int, ...],
ndim: int,
rate: Optional[int] = None,
**kwargs
):
"""Returns PeriodicConvTranspose module with specified parameters."""
if rate is not None and rate != 1:
raise ValueError('transpose convolutions do not support dilation rate')
return PERIODIC_CONV_TRANSPOSE_MODULES[ndim](
output_channels, kernel_shape, **kwargs)
@gin.register
def mirror_convolution(
output_channels: int,
kernel_shape: Tuple[int, ...],
ndim: int,
**kwargs
):
"""Returns MirrorConv2D module with specified parameters."""
del ndim
return layers.MirrorConv2D(
output_channels, kernel_shape, **kwargs)
@gin.register
def fixed_scale(inputs: Array,
axes: Tuple[int, ...],
rescaled_one: float = gin.REQUIRED) -> Array:
"""Linearly scales `inputs` such that `1` maps to `rescaled_one`."""
del axes # unused.
return inputs * rescaled_one
@gin.register
def fixed_scale_gridvar(
inputs: Array,
axes: Tuple[int, ...],
rescaled_one: float = gin.REQUIRED
) ->Array:
"""Linearly scales `inputs` such that `1` maps to `rescaled_one`."""
del axes # unused.
return tuple(x.bc.impose_bc(x.array * rescaled_one) for x in inputs) # pytype: disable=bad-return-type # jax-devicearray
@gin.register
def scale_to_range(
inputs: Array,
axes: Tuple[int, ...],
min_value: float = gin.REQUIRED,
max_value: float = gin.REQUIRED,
) -> Array:
"""Dynamically scales `inputs` to be in `[min_value, max_value]` range.
This scaling function represents a shift and scale transform that forces every
`axes` slice of `inputs` to be exactly in range `[min_value, max_value]`.
For details see `layers.rescale_to_range`.
Args:
inputs: array values to be rescaled.
axes: tuple of ints representing axes over which the scaling is calculated.
min_value: minimum value to appear in the rescaled values.
max_value: maximum value to appear in the rescaled values.
Returns:
`inputs` scale to `[min_value, max_value]` range on every `axes` slice.
"""
return layers.rescale_to_range(inputs, min_value, max_value, axes)
@gin.register
class MlpTowerFactory(hk.Module):
"""Tower that applies shared MLP to inputs over spatial dimensions."""
def __init__(
self,
output_size: int,
ndim: int,
num_hidden_units: int,
num_hidden_layers: int,
nonlinearity: Callable[[Array], Array] = nonlinearities.relu,
inputs_scale_fn: ScaleFn = lambda x, axes: x,
output_scale_fn: ScaleFn = lambda x, axes: x,
name: Optional[str] = 'mlp_tower_factory',
):
super().__init__(name=name)
output_sizes = [num_hidden_units] * num_hidden_layers + [output_size]
mlp_net = hk.nets.MLP(output_sizes, activation=nonlinearity)
for _ in range(ndim):
mlp_net = hk.vmap(mlp_net, split_rng=False)
ndim_axes = list(range(ndim))
self.inputs_scale_fn = functools.partial(inputs_scale_fn, axes=ndim_axes)
self.output_scale_fn = functools.partial(output_scale_fn, axes=ndim_axes)
self.mlp_tower = mlp_net
def __call__(self, inputs):
"""Applied Mlp tower to `inputs`."""
return self.output_scale_fn(self.mlp_tower(self.inputs_scale_fn(inputs)))
@gin.register
def forward_tower_factory(
num_output_channels: int,
ndim: int,
num_hidden_channels: int = 16,
kernel_size: int = 3,
num_hidden_layers: int = 2,
rates: Union[int, Tuple[int, ...]] = 1,
strides: Union[int, Tuple[int, ...]] = 1,
output_kernel_size: int = 3,
output_dilation_rate: int = 1,
output_stride: int = 1,
conv_module: ConvModule = periodic_convolution,
nonlinearity: Callable[[Array], Array] = nonlinearities.relu,
inputs_scale_fn: ScaleFn = lambda x, axes: x,
output_scale_fn: ScaleFn = lambda x, axes: x,
name: Optional[str] = 'forward_cnn_tower',
):
"""Constructs parametrized feed-forward CNN tower.
Constructs CNN tower parametrized by fixed number of channels in hidden layers
and fixed square kernels.
Args:
num_output_channels: number of channels in the output layer.
ndim: number of spatial dimensions to expect in inputs to the network.
num_hidden_channels: number of channels to use in hidden layers.
kernel_size: size of the kernel to use along every dimension.
num_hidden_layers: number of hidden layers to construct in the tower.
rates: dilation rate(s) of the hidden layers.
strides: strides to use. Must be `int` or same a `num_hidden_layers`.
output_kernel_size: size of the output kernel to use along every dimension.
output_dilation_rate: dilation_rate of the output layer.
output_stride: stride of the final convolution.
conv_module: convolution module to use. Must accept
(output channels, kernel shape and ndim).
nonlinearity: nonlinearity function to apply between hidden layers.
inputs_scale_fn: scaling function to be applied to the inputs of the tower.
Must take inputs as argument and return an `Array` of the same shape.
Can expect an `axes` arguments specifying spatial axes in inputs.
output_scale_fn: similar to `inputs_scale_fn` but applied to outputs.
name: a name for this CNN tower. This name will appear in Xprof traces.
Returns:
CNN tower with specified configuration.
"""
channels = (num_hidden_channels,) * num_hidden_layers
kernel_shapes = ((kernel_size,) * ndim,) * num_hidden_layers
output_kernel_shape = (output_kernel_size,) * ndim
return forward_flex_tower_factory(
num_output_channels=num_output_channels, ndim=ndim, channels=channels,
kernel_shapes=kernel_shapes, rates=rates, strides=strides,
output_kernel_shape=output_kernel_shape, output_rate=output_dilation_rate,
output_stride=output_stride, conv_module=conv_module,
nonlinearity=nonlinearity, inputs_scale_fn=inputs_scale_fn,
output_scale_fn=output_scale_fn, name=name)
@gin.register
def forward_flex_tower_factory(
num_output_channels: int,
ndim: int,
channels: Tuple[int, ...] = (16, 16),
kernel_shapes: Tuple[Tuple[int, ...], ...] = ((3, 3), (3, 3)),
rates: Tuple[int, ...] = (1, 1),
strides: Tuple[int, ...] = (1, 1),
output_kernel_shape: Tuple[int, ...] = (3, 3),
output_rate: int = 1,
output_stride: int = 1,
conv_module: ConvModule = periodic_convolution,
nonlinearity: Callable[[Array], Array] = nonlinearities.relu,
inputs_scale_fn: ScaleFn = lambda x, axes: x,
output_scale_fn: ScaleFn = lambda x, axes: x,
name: Optional[str] = 'forward_flex_cnn_tower',
):
"""Constructs CNN tower with specified architecture.
Args:
num_output_channels: number of channels in the output layer.
ndim: number of spatial dimensions to expect in inputs to the network.
channels: tuple specifying number of channels in hidden layers.
kernel_shapes: tuple specifying shapes of kernels in hidden layers.
Each entry must be a tuple that specifies a valid kernel_shape for the
provided `conv_module`. Must have the same length as `channels`.
rates: dilation rates of the convolutions.
strides: strides to use in convolutions.
output_kernel_shape: shape of the output kernel.
output_rate: dilation rate of the final convolution.
output_stride: stride of the final convolution.
conv_module: convolution module to use. Must accept
(output channels, kernel shape and ndim).
nonlinearity: nonlinearity function to apply between hidden layers.
inputs_scale_fn: scaling function to be applied to the inputs of the tower.
Must take `inputs`, `axes` arguments specifying input `Array` and
spatial dimensions and return an `Array` of the same shape as `inputs`.
output_scale_fn: similar to `inputs_scale_fn` but applied to outputs.
name: a name for this CNN tower. This name will appear in Xprof traces.
Returns:
CNN tower with specified architecture.
"""
if isinstance(strides, int):
strides = (strides,) * len(channels)
if isinstance(rates, int):
rates = (rates,) * len(channels)
ndim_axes = list(range(ndim))
n_convs = len(channels)
if not all(len(arg) == n_convs for arg in [kernel_shapes, rates, strides]):
raise ValueError('conflicting lengths for channels/kernels/rates/strides: '
f'{channels} / {kernel_shapes} / {rates} / {strides}')
def forward_pass(inputs):
components = [functools.partial(inputs_scale_fn, axes=ndim_axes)]
conv_args = zip(channels, kernel_shapes, rates, strides)
for num_channels, kernel_shape, rate, stride in conv_args:
components.append(conv_module(num_channels, kernel_shape, ndim, rate=rate,
stride=stride))
components.append(nonlinearity)
components.append(conv_module(num_output_channels, output_kernel_shape,
ndim, rate=output_rate, stride=output_stride))
components.append(functools.partial(output_scale_fn, axes=ndim_axes))
return hk.Sequential(components)(inputs)
module = hk.to_module(forward_pass)(name=name)
return jax.named_call(module, name=name)
@gin.register
def residual_block_tower_factory(
num_output_channels: int,
ndim: int,
num_blocks: int = 2,
block_factory: TowerFactory = forward_tower_factory,
skip_connection_fn: Callable[..., Array] = lambda x, block_num: x,
inputs_scale_fn: ScaleFn = lambda x, axes: x,
output_scale_fn: ScaleFn = lambda x, axes: x,
name: Optional[str] = 'residual_block_tower',
):
"""Constructs a tower with skip connections between blocks."""
def forward_pass(inputs):
inputs = inputs_scale_fn(inputs, list(range(ndim)))
for block_num in range(num_blocks - 1):
skip = skip_connection_fn(inputs, block_num)
block = block_factory(skip.shape[-1], ndim)
inputs = skip + block(inputs)
last_block = block_factory(num_output_channels, ndim)
return output_scale_fn(last_block(inputs), list(range(ndim)))
module = hk.to_module(forward_pass)(name=name)
return jax.named_call(module, name=name)
@gin.register
def residual_connection(*args, module_factory, **kwargs):
"""Apply module_factory() as a residual correction to inputs."""
def forward_pass(inputs):
return inputs + module_factory(*args, **kwargs)(inputs)
return hk.to_module(forward_pass)()
"""Tests for google3.research.simulation.whirl.models.towers."""
import itertools
from absl.testing import absltest
from absl.testing import parameterized
import gin
import haiku as hk
import jax
from jax_cfd.base import test_util
from jax_cfd.ml import towers # pylint: disable=unused-import
TOWERS = ['towers.forward_tower_factory', 'towers.residual_block_tower_factory']
SCALE_FNS = ['towers.fixed_scale', 'towers.scale_to_range']
NDIMS = [1, 2, 3]
INPUT_CHANNELS = [1, 6]
def test_parameters():
product = itertools.product(TOWERS, SCALE_FNS, NDIMS, INPUT_CHANNELS)
parameters = []
for tower, scale_fn, ndim, input_channels in product:
name = '_'.join([tower, scale_fn, f'{ndim}D', f'{input_channels}_channels'])
parameters.append(dict(
testcase_name=name,
tower_module=tower,
scale_fn_module=scale_fn,
ndim=ndim,
input_channels=input_channels))
return parameters
@gin.configurable
def forward_pass_module(
num_output_channels,
ndim,
tower_module=gin.REQUIRED
):
"""Constructs a function that initializes tower and applies it to inputs."""
def forward_pass(inputs):
return tower_module(num_output_channels, ndim)(inputs)
return forward_pass
class TowersTest(test_util.TestCase):
"""Tests towers construction, configuration and composition."""
def setUp(self):
"""Configures all scale_fns that have gin.REQUIRED values."""
super().setUp()
gin.enter_interactive_mode()
config = '\n'.join([
'towers.fixed_scale.rescaled_one = 0.3',
'towers.scale_to_range.min_value = -1.23',
'towers.scale_to_range.max_value = 1.21'
])
gin.parse_config(config)
@parameterized.named_parameters(*test_parameters())
def test_output_shapes(
self,
tower_module,
scale_fn_module,
ndim,
input_channels
):
"""Tests that towers produce outputs of expected shapes."""
gin.enter_interactive_mode()
config = '\n'.join([
f'forward_pass_module.tower_module = @{tower_module}',
f'{tower_module}.inputs_scale_fn = @{scale_fn_module}'
])
gin.parse_config(config)
num_output_channels = 5
spatial_size = 17
rng = jax.random.PRNGKey(42)
inputs = jax.random.uniform(rng, (spatial_size,) * ndim + (input_channels,))
forward_pass = hk.without_apply_rng(
hk.transform(forward_pass_module(num_output_channels, ndim)))
params = forward_pass.init(rng, inputs)
output = forward_pass.apply(params, inputs)
expected_output_shape = inputs.shape[:-1] + (num_output_channels,)
actual_output_shape = output.shape
self.assertEqual(actual_output_shape, expected_output_shape)
if __name__ == '__main__':
absltest.main()
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Often used training utility funcutils."""
import collections
from typing import Any, Callable, Iterable, Iterator, Mapping, Optional, Tuple, Union
import gin
import jax
from jax_cfd.base import array_utils
from jax_cfd.base import grids
# TODO(dkochkov): make utility functions agnostic of jax_cfd/other models;
Array = grids.Array
Field = Tuple[Array, ...]
GridArray = grids.GridArray
GridArrayVector = grids.GridArrayVector
# TODO(jamieas): Replace `Any` with well-defined types.
IntOrArray = Union[int, Array]
NavierStokesState = Tuple[GridArrayVector, GridArray, Optional[GridArray]]
Velocity = Field
OptimizerState = Any
ModelParams = Any
ModelGradients = ModelParams
EMAParams = ModelParams
StepAndOptimizerState = Tuple[IntOrArray, OptimizerState]
StepOptAndEMAState = Tuple[IntOrArray, OptimizerState, ModelParams]
LossValue = Array
LossFunction = Callable[[GridArrayVector, GridArrayVector], LossValue]
LossAndGradFunction = Callable[[ModelParams, Array],
Tuple[LossValue, ModelGradients]]
MetricFunction = Callable[[Velocity, Velocity], Array]
TrainStepFunction = Callable[[StepAndOptimizerState, Array],
Tuple[OptimizerState, Array]]
EvalStepFunction = Callable[[OptimizerState, Field],
Mapping[str, Array]]
TrajectoryFunction = Callable[[ModelParams, Velocity],
Tuple[Velocity, Velocity]]
#
# Note that all functions below deal with *batched* inputs.
#
def loss_and_gradient(
trajectory_fn: TrajectoryFunction,
loss_fn: LossFunction
) -> LossAndGradFunction:
"""Returns a function that computes loss and the gradient of the loss.
Args:
trajectory_fn: a function that accepts `params` and `initial_velocity`
and returns a trajectory of velocities.
loss_fn: a function that accepts a predicted trajectory and a ground truth
trajectory, returning a scalar loss value.
Returns:
A function that accepts `params, initial_velocity, target_trajectory` and
returns the loss and the gradient of the loss.
"""
def _loss(params: ModelParams, target_trajectory: Velocity) -> LossValue:
"""Returns loss value and gradient with respect to model parameters."""
_, predicted_trajectory = trajectory_fn(params, target_trajectory)
loss = loss_fn(predicted_trajectory, target_trajectory) # type: ignore
return loss
return jax.value_and_grad(_loss)
def train_step(
loss_and_grad_fn: LossAndGradFunction,
update_fn: Callable[[int, ModelGradients, OptimizerState], OptimizerState],
get_params_fn: Callable[[OptimizerState], ModelParams]
) -> TrainStepFunction:
"""Returns a function that performs a single training step.
Args:
loss_and_grad_fn: a function that accepts `params, initial_velocity,
target_trajectory` and returns the loss and the gradient of the loss.
update_fn: a function that accepts `step_num, gradients, optimizer_state`
and returns an updated optimizer state.
get_params_fn: a function that accepts `optimizer_state` and returns model
params. If the state is encoded by params, this should be the identity.
Returns:
A function that performs a single training step.
"""
def _train_step(
step_and_state: StepAndOptimizerState,
target_trajectory: Array,
) -> Tuple[StepAndOptimizerState, LossValue]:
"""A function that performs a single training step."""
step, optimizer_state = step_and_state
params = get_params_fn(optimizer_state)
loss, grad = loss_and_grad_fn(params, target_trajectory)
optimizer_state = update_fn(step, grad, optimizer_state)
return (step + 1, optimizer_state), loss
return _train_step
def eval_batch(
trajectory_fn: TrajectoryFunction,
metric_funcs: Mapping[str, MetricFunction],
) -> EvalStepFunction:
"""Returns a function that performs a single evaluation step.
Args:
trajectory_fn: a function that accepts `params` and `initial_velocity`
and returns a trajectory of velocities.
metric_funcs: a dictionary mapping strings to metric funcutils.
Returns:
A function that performs a single evaluation step.
"""
def _eval_batch(
params: ModelParams,
target_trajectory: Velocity,
) -> Mapping[str, Array]:
"""A function that performs a single training step."""
_, predicted_trajectory = trajectory_fn(params, target_trajectory)
metric_values = {k: metric(predicted_trajectory, target_trajectory)
for k, metric in metric_funcs.items()}
return metric_values
return _eval_batch
def streaming_mean(
batches: Iterable[Velocity],
eval_fn: Callable[[Field], Mapping[str, Array]],
) -> Mapping[str, Array]:
"""Runs evaluation on `eval_data`.
Args:
batches: an iterable of batched velocity trajectories.
eval_fn: a function that performs a single evaluation step.
Returns:
A dict mapping strings to metric values.
Raises:
RuntimeError: if there are no batches to iterate over.
"""
# TODO(jamieas): update to accommodate non-scalar metrics.
eval_metrics = collections.defaultdict(float)
count = 0
for batch in batches:
batch_metrics = eval_fn(batch)
for k, v in batch_metrics.items():
eval_metrics[k] += v
count += 1
if not count:
raise RuntimeError("no batches to iterate over")
return {k: v / count for k, v in eval_metrics.items()}
@gin.register
def identity(batch: Tuple[Array, ...], rng: Array = None) -> Tuple[Array, ...]:
"""Identity preprocessing function that does not modify the `batch`."""
del rng # unused.
return batch
# TODO(dkochkov) consider adding an option to perform pressure projection step.
@gin.configurable
def add_noise_to_input_frame(
batch: Tuple[Array, ...],
rng: Array,
scale: float = 1e-2,
**kwargs
) -> Tuple[Array, ...]:
"""Adds noise to the 0th time frame in the `batch`.
Args:
batch: original batch to which the noise will be added.
rng: random number key to be used to generate noise.
scale: scale of the normal noise to be added.
**kwargs: other keyword arguments. Not used.
Returns:
batch with noise added along the 0th time slice.
"""
del kwargs # unused.
time_zero_slice = array_utils.slice_along_axis(batch, 1, 0)
shapes = jax.tree_util.tree_map(lambda x: x.shape, time_zero_slice)
rngs = jax.random.split(rng, len(jax.tree_util.leaves(time_zero_slice)))
# TODO(dkochkov) add `split_like` method to `array_utils.py`.
rngs = jax.tree_util.unflatten(jax.tree_util.structure(time_zero_slice), rngs)
noise_fn = lambda key, s: scale * jax.random.truncated_normal(key, -2., 2., s)
noise = jax.tree_util.tree_map(noise_fn, rngs, shapes)
add_noise_fn = lambda x, n: x.at[:, 0, ...].add(n)
return jax.tree_util.tree_map(add_noise_fn, batch, noise)
def preprocess(
data_iterator: Iterator[Tuple[Array, ...]],
rng_stream: Iterator[Array],
preprocess_fn: Callable[..., Tuple[Array, ...]]
):
"""Generator that applies `preprocess_fn` to entries of the `data_iterator`.
Args:
data_iterator: numpy iterator holding the data.
rng_stream: stream of random numbers to be used by `preprocess_fn`.
preprocess_fn: preprocessing function to be applied to each batch of data.
Yields:
Batch of data from `data_iterator` preprocessed with `preprocess_fn`.
"""
preprocess_fn = jax.jit(preprocess_fn)
while True:
rng = next(rng_stream)
yield preprocess_fn(next(data_iterator), rng)
"""Models for closure terms and effective viscosities."""
import functools
from typing import Any, Callable, Optional, Tuple, Union
import gin
import haiku as hk
import jax
import jax.numpy as jnp
from jax_cfd.base import boundaries
from jax_cfd.base import grids
from jax_cfd.base import subgrid_models
from jax_cfd.ml import interpolations
from jax_cfd.ml import physics_specifications
from jax_cfd.ml import towers
import numpy as np
Array = Union[np.ndarray, jax.Array]
GridArray = grids.GridArray
GridArrayVector = grids.GridArrayVector
GridVariableVector = grids.GridVariableVector
InterpolationModule = interpolations.InterpolationModule
ViscosityFn = Callable[[grids.GridArrayTensor, GridArrayVector, grids.Grid],
grids.GridArrayTensor]
ViscosityModule = Callable[..., ViscosityFn]
@gin.register
def smagorinsky_viscosity(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.NavierStokesPhysicsSpecs,
viscosity_scale: Optional[float] = None,
cs: float = 0.2,
interpolation_module: InterpolationModule = interpolations.linear,
) -> ViscosityFn:
"""Constructs a Smagorinsky viscosity model."""
del viscosity_scale # unused.
interpolate = interpolation_module(grid, dt, physics_specs)
viscosity_fn = functools.partial(
subgrid_models.smagorinsky_viscosity, dt=dt, cs=cs,
interpolate_fn=interpolate)
return hk.to_module(viscosity_fn)(name='smagorinsky_viscosity')
@gin.register
def learned_scalar_viscosity(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.NavierStokesPhysicsSpecs,
viscosity_scale: float,
interpolate_module: InterpolationModule = interpolations.linear,
tower_factory: Callable[..., Any] = towers.forward_tower_factory,
) -> ViscosityFn:
"""Constructs an learned, scalar-valued viscosity model."""
def interpolate(
c: GridArray,
offset: Tuple[float, ...],
v: Optional[GridVariableVector] = None,
dt: Optional[float] = None,
) -> grids.GridArray:
"""Interpolation method wrapped for GridArray using periodic BC."""
bc = boundaries.periodic_boundary_conditions(grid.ndim)
c_bc = grids.GridVariable(c, bc)
interp_var = interpolate_module(grid, dt, physics_specs)(
c_bc, offset, v, dt)
return interp_var.array
def viscosity_fn(
s_ij: grids.GridArrayTensor,
v: GridArrayVector,
) -> grids.GridArrayTensor:
"""Computes effective eddy viscosity using learned components.
This viscosity model computes parametric scalar viscosity that is
interpolated to the offsets of the strain rate tensor.
Args:
s_ij: strain rate tensor that is equal to the forward finite difference
derivatives of the velocity field `(d(u_i)/d(x_j) + d(u_j)/d(x_i)) / 2`.
v: velocity field.
Returns:
tensor containing values of the eddy viscosity at the same grid offsets
as the strain tensor `s_ij`.
"""
s_ij_offsets = [array.offset for array in s_ij.ravel()]
unique_offsets = list(set(s_ij_offsets))
viscosity_net = tower_factory(1, grid.ndim)
inputs = jnp.stack([u.data for u in v], axis=-1)
predicted_viscosity = (viscosity_scale + 1e-6) * viscosity_net(inputs)
predicted_viscosity = grids.GridArray(
data=jnp.squeeze(predicted_viscosity, -1),
offset=grid.cell_center, grid=grid)
interpolated_viscosities = {
offset: interpolate(predicted_viscosity, offset, v, dt) # pytype: disable=wrong-arg-types # always-use-return-annotations
for offset in unique_offsets}
viscosities = [interpolated_viscosities[offset] for offset in s_ij_offsets]
tree_def = jax.tree_util.tree_structure(s_ij)
return jax.tree_util.unflatten(tree_def, [x.data for x in viscosities])
return hk.to_module(viscosity_fn)()
@gin.register
def learned_scalar_viscosity_from_gradients(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.NavierStokesPhysicsSpecs,
viscosity_scale: float,
interpolate_module: InterpolationModule = interpolations.linear,
tower_factory: Callable[..., Any] = towers.forward_tower_factory,
) -> ViscosityFn:
"""Constructs a scalar viscosity model predicted from velocity gradients."""
def interpolate(
c: GridArray,
offset: Tuple[float, ...],
v: Optional[GridVariableVector] = None,
dt: Optional[float] = None,
) -> grids.GridArray:
"""Interpolation method wrapped for GridArray using periodic BC."""
bc = boundaries.periodic_boundary_conditions(grid.ndim)
c_bc = grids.GridVariable(c, bc)
interp_var = interpolate_module(grid, dt, physics_specs)(
c_bc, offset, v, dt)
return interp_var.array
def viscosity_fn(
s_ij: grids.GridArrayTensor,
v: GridArrayVector,
) -> grids.GridArrayTensor:
"""Computes effective eddy viscosity using learned components.
This viscosity model computes parametric scalar viscosity that is
interpolated to the offsets of the strain rate tensor.
Args:
s_ij: strain rate tensor that is equal to the forward finite difference
derivatives of the velocity field `(d(u_i)/d(x_j) + d(u_j)/d(x_i)) / 2`.
v: velocity field.
Returns:
tensor containing values of the eddy viscosity at the same grid offsets
as the strain tensor `s_ij`.
"""
s_ij_offsets = [array.offset for array in s_ij.ravel()]
unique_offsets = list(set(s_ij_offsets))
viscosity_net = tower_factory(1, grid.ndim)
cell_center = grid.cell_center
interpolate_to_center = lambda x: interpolate(x, cell_center, v, dt) # pytype: disable=wrong-arg-types
centered_s_ij = np.vectorize(interpolate_to_center)(s_ij)
inputs = jnp.stack([array.data for array in centered_s_ij.ravel()], axis=-1)
predicted_viscosity = (viscosity_scale + 1e-6) * viscosity_net(inputs)
predicted_viscosity = grids.GridArray(
data=jnp.squeeze(predicted_viscosity, -1),
offset=grid.cell_center, grid=grid)
interpolated_viscosities = {
offset: interpolate(predicted_viscosity, offset, v, dt) # pytype: disable=wrong-arg-types # always-use-return-annotations
for offset in unique_offsets}
viscosities = [interpolated_viscosities[offset] for offset in s_ij_offsets]
tree_def = jax.tree_util.tree_structure(s_ij)
return jax.tree_util.unflatten(tree_def, [x.data for x in viscosities])
return hk.to_module(viscosity_fn)()
@gin.register
def learned_tensor_viscosity(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.NavierStokesPhysicsSpecs,
viscosity_scale: float,
tower_factory: Callable[..., Any] = towers.forward_tower_factory,
) -> ViscosityFn:
"""Constructs an learned, tensor-valued viscosity model."""
del dt, physics_specs
def viscosity_fn(
s_ij: grids.GridArrayTensor,
v: GridArrayVector,
) -> grids.GridArrayTensor:
"""Computes effective eddy viscosity using learned components.
This viscosity model computes parametric tensor viscosity that predicts
independent values at all offsets of the strain rate tensor.
Args:
s_ij: strain rate tensor that is equal to the forward finite difference
derivatives of the velocity field `(d(u_i)/d(x_j) + d(u_j)/d(x_i)) / 2`.
v: velocity field.
Returns:
tensor containing values of the eddy viscosity at the same grid offsets
as the strain tensor `s_ij`.
"""
s_ij_offsets = [array.offset for array in s_ij.ravel()]
unique_offsets = list(set(s_ij_offsets))
num_offsets = len(unique_offsets)
viscosity_net = tower_factory(num_offsets, grid.ndim)
inputs = jnp.stack([u.data for u in v], axis=-1)
viscosities = (viscosity_scale + 1e-6) * viscosity_net(inputs)
viscosities = jnp.split(viscosities, np.arange(1, num_offsets), axis=-1)
viscosities_dict = {
offset: jnp.squeeze(visc, axis=-1) # remove channel dimension.
for offset, visc in zip(unique_offsets, viscosities)}
viscosities = [viscosities_dict[offset] for offset in s_ij_offsets]
tree_def = jax.tree_util.tree_structure(s_ij)
return jax.tree_util.unflatten(tree_def, viscosities)
return hk.to_module(viscosity_fn)()
@gin.register
def eddy_viscosity_model(
grid: grids.Grid,
dt: float,
physics_specs: physics_specifications.NavierStokesPhysicsSpecs,
v: Optional[GridArrayVector] = None,
viscosity_scale: Optional[float] = None,
viscosity_model: ViscosityModule = smagorinsky_viscosity,
):
"""Constructs eddy viscosity model that computes accelerations.
Eddy viscosity models compute a turbulence closure term as a divergence of the
subgrid-scale stress tensor, which is expressed as velocity dependent
viscosity times the rate of strain tensor. This module delegates computation
of the eddy-viscosity to `viscosity_model` function. Note that if outputs of
the `viscosity_model` are not unrestricted to interpolations of a scalar
field, this model can represent almost arbitrary stress tensor.
For details see go/whirl-evm.
Args:
grid: grid on which the Navier-Stokes equation is discretized.
dt: time step to use for time evolution.
physics_specs: physical parameters of the simulation module.
v: optional velocity field that is used to precompute values in models.
viscosity_scale: the kinematic viscosity of the fluid.
viscosity_model: function that generates a `viscosity_fn`.
Returns:
Function that computes accelerations due to eddy viscosity model.
"""
del v # unused.
if viscosity_scale is None:
viscosity_scale = physics_specs.viscosity
viscosity = viscosity_model(
grid, dt, physics_specs, viscosity_scale=viscosity_scale)
evm_fn = functools.partial(subgrid_models.evm_model, viscosity_fn=viscosity)
return hk.to_module(evm_fn)(name='eddy_viscosity_model')
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pseudospectral codes (no ML)."""
import jax_cfd.spectral.equations
import jax_cfd.spectral.time_stepping
import jax_cfd.spectral.types
import jax_cfd.spectral.utils
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment