from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import torch import torch.utils.data from opts_pose import opts from models.model import create_model, load_model, save_model from models.data_parallel import DataParallel from logger import Logger from datasets.dataset_factory import get_dataset from trains.train_factory import train_factory from datasets.sample.multi_pose import Multiposebatch def main(opt, qtepoch=[0,]): torch.manual_seed(opt.seed) torch.backends.cudnn.benchmark = not opt.not_cuda_benchmark and not opt.test Dataset = get_dataset(opt.dataset, opt.task) opt = opts().update_dataset_info_and_set_heads(opt, Dataset) print(opt) logger = Logger(opt) os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu') print('Creating model...') model = create_model(opt.arch, opt.heads, opt.head_conv) optimizer = torch.optim.Adam(model.parameters(), opt.lr) # optimizer = torch.optim.SGD(model.parameters(), opt.lr) start_epoch = 0 if opt.load_model != '': model, optimizer, start_epoch = load_model( model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step) Trainer = train_factory[opt.task] trainer = Trainer(opt, model, optimizer) trainer.set_device(opt.gpus, opt.chunk_sizes, opt.device) print('Setting up data...') val_loader = torch.utils.data.DataLoader( Dataset(opt, 'val'), batch_size=1, shuffle=False, num_workers=1, pin_memory=True ) if opt.test: _, preds = trainer.val(0, val_loader) val_loader.dataset.run_eval(preds, opt.save_dir) return train_loader = torch.utils.data.DataLoader( Dataset(opt, 'train'), batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, pin_memory=True, drop_last=True, collate_fn=Multiposebatch ) print('Starting training...') best = 1e10 for epoch in range(start_epoch + 1, opt.num_epochs + 1): qtepoch.append(epoch) mark = epoch if opt.save_all else 'last' log_dict_train, _ = trainer.train(epoch, train_loader) logger.write('epoch: {}/{} |'.format(epoch, opt.num_epochs)) for k, v in log_dict_train.items(): logger.scalar_summary('train_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if opt.val_intervals > 0 and epoch % opt.val_intervals == 0: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(mark)), epoch, model, optimizer) with torch.no_grad(): log_dict_val, preds = trainer.val(epoch, val_loader) for k, v in log_dict_val.items(): logger.scalar_summary('val_{}'.format(k), v, epoch) logger.write('{} {:8f} | '.format(k, v)) if log_dict_val[opt.metric] < best: best = log_dict_val[opt.metric] save_model(os.path.join(opt.save_dir, 'model_best.pth'), epoch, model) else: save_model(os.path.join(opt.save_dir, 'model_last.pth'), epoch, model, optimizer) logger.write('\n') if epoch in opt.lr_step: save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)), epoch, model, optimizer) lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1)) print('Drop LR to', lr) for param_group in optimizer.param_groups: param_group['lr'] = lr logger.close() if __name__ == '__main__': opt = opts().parse() main(opt)