import re import math import collections from functools import partial import torch from torch import nn from torch.nn import functional as F from torch.utils import model_zoo ######################################################################## ############### HELPERS FUNCTIONS FOR MODEL ARCHITECTURE ############### ######################################################################## # Parameters for the entire model (stem, all blocks, and head) GlobalParams = collections.namedtuple('GlobalParams', [ 'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes', 'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size']) # Parameters for an individual model block BlockArgs = collections.namedtuple('BlockArgs', [ 'kernel_size', 'num_repeat', 'input_filters', 'output_filters', 'expand_ratio', 'id_skip', 'stride', 'se_ratio']) # Change namedtuple defaults GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_variables[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) def round_filters(filters, global_params): """ Calculate and round number of filters based on depth multiplier. """ multiplier = global_params.width_coefficient if not multiplier: return filters divisor = global_params.depth_divisor min_depth = global_params.min_depth filters *= multiplier min_depth = min_depth or divisor new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: # prevent rounding by more than 10% new_filters += divisor return int(new_filters) def round_repeats(repeats, global_params): """ Round number of filters based on depth multiplier. """ multiplier = global_params.depth_coefficient if not multiplier: return repeats return int(math.ceil(multiplier * repeats)) def drop_connect(inputs, p, training): """ Drop connect. """ if not training: return inputs batch_size = inputs.shape[0] keep_prob = 1 - p random_tensor = keep_prob random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) binary_tensor = torch.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output def get_same_padding_conv2d(image_size=None): """ Chooses static padding if you have specified an image size, and dynamic padding otherwise. Static padding is necessary for ONNX exporting of models. """ if image_size is None: return Conv2dDynamicSamePadding else: return partial(Conv2dStaticSamePadding, image_size=image_size) class Conv2dDynamicSamePadding(nn.Conv2d): """ 2D Convolutions like TensorFlow, for a dynamic image size """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class Conv2dStaticSamePadding(nn.Conv2d): """ 2D Convolutions like TensorFlow, for a fixed image size""" def __init__(self, in_channels, out_channels, kernel_size, image_size=None, **kwargs): super().__init__(in_channels, out_channels, kernel_size, **kwargs) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 # Calculate padding based on image size and save it assert image_size is not None ih, iw = image_size if type(image_size) == list else [image_size, image_size] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) else: self.static_padding = Identity() def forward(self, x): x = self.static_padding(x) x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return x class Identity(nn.Module): def __init__(self, ): super(Identity, self).__init__() def forward(self, input): return input ######################################################################## ############## HELPERS FUNCTIONS FOR LOADING MODEL PARAMS ############## ######################################################################## def efficientnet_params(model_name): """ Map EfficientNet model name to parameter coefficients. """ params_dict = { # Coefficients: width,depth,res,dropout 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), } return params_dict[model_name] class BlockDecoder(object): """ Block Decoder for readability, straight from the official TensorFlow repository """ @staticmethod def _decode_block_string(block_string): """ Gets a block through a string notation of arguments. """ assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # Check stride assert (('s' in options and len(options['s']) == 1) or (len(options['s']) == 2 and options['s'][0] == options['s'][1])) return BlockArgs( kernel_size=int(options['k']), num_repeat=int(options['r']), input_filters=int(options['i']), output_filters=int(options['o']), expand_ratio=int(options['e']), id_skip=('noskip' not in block_string), se_ratio=float(options['se']) if 'se' in options else None, stride=[int(options['s'][0])]) @staticmethod def _encode_block_string(block): """Encodes a block to a string.""" args = [ 'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' % (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio, 'i%d' % block.input_filters, 'o%d' % block.output_filters ] if 0 < block.se_ratio <= 1: args.append('se%s' % block.se_ratio) if block.id_skip is False: args.append('noskip') return '_'.join(args) @staticmethod def decode(string_list): """ Decodes a list of string notations to specify blocks inside the network. :param string_list: a list of strings, each string is a notation of block :return: a list of BlockArgs namedtuples of block args """ assert isinstance(string_list, list) blocks_args = [] for block_string in string_list: blocks_args.append(BlockDecoder._decode_block_string(block_string)) return blocks_args @staticmethod def encode(blocks_args): """ Encodes a list of BlockArgs to a list of strings. :param blocks_args: a list of BlockArgs namedtuples of block args :return: a list of strings, each string is a notation of block """ block_strings = [] for block in blocks_args: block_strings.append(BlockDecoder._encode_block_string(block)) return block_strings def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2, drop_connect_rate=0.2, image_size=None, num_classes=1000): """ Creates a efficientnet model. """ blocks_args = [ 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', 'r3_k5_s22_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', 'r1_k3_s22_e6_i192_o320_se0.25', ] blocks_args = BlockDecoder.decode(blocks_args) global_params = GlobalParams( batch_norm_momentum=0.99, batch_norm_epsilon=1e-3, dropout_rate=dropout_rate, drop_connect_rate=drop_connect_rate, # data_format='channels_last', # removed, this is always true in PyTorch num_classes=num_classes, width_coefficient=width_coefficient, depth_coefficient=depth_coefficient, depth_divisor=8, min_depth=None, image_size=image_size, ) return blocks_args, global_params def get_model_params(model_name, override_params): """ Get the block args and global params for a given model """ if model_name.startswith('efficientnet'): w, d, s, p = efficientnet_params(model_name) # note: all models have drop connect rate = 0.2 blocks_args, global_params = efficientnet( width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) else: raise NotImplementedError('model name is not pre-defined: %s' % model_name) if override_params: # ValueError will be raised here if override_params has fields not included in global_params. global_params = global_params._replace(**override_params) return blocks_args, global_params url_map = { 'efficientnet-b0': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b0-355c32eb.pth', 'efficientnet-b1': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b1-f1951068.pth', 'efficientnet-b2': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b2-8bb594d6.pth', 'efficientnet-b3': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b3-5fb5a3c3.pth', 'efficientnet-b4': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b4-6ed6700e.pth', 'efficientnet-b5': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b5-b6417697.pth', 'efficientnet-b6': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b6-c76e70fd.pth', 'efficientnet-b7': 'http://storage.googleapis.com/public-models/efficientnet/efficientnet-b7-dcc49843.pth', } def load_pretrained_weights(model, model_name, load_fc=True): """ Loads pretrained weights, and downloads if loading for the first time. """ state_dict = model_zoo.load_url(url_map[model_name], map_location=lambda storage, loc: storage) if load_fc: model.load_state_dict(state_dict) else: state_dict.pop('_fc.weight') state_dict.pop('_fc.bias') res = model.load_state_dict(state_dict, strict=False) assert set(res.missing_keys) == set(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights' print('Loaded pretrained weights for {}'.format(model_name))