from __future__ import absolute_import from __future__ import division from __future__ import print_function # Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 import os import time import sys import torch USE_TENSORBOARD = True try: import tensorboardX print('Using tensorboardX') except: USE_TENSORBOARD = False class Logger(object): def __init__(self, opt): """Create a summary writer logging to log_dir.""" if not os.path.exists(opt.save_dir): os.makedirs(opt.save_dir) if not os.path.exists(opt.debug_dir): os.makedirs(opt.debug_dir) time_str = time.strftime('%Y-%m-%d-%H-%M') args = dict((name, getattr(opt, name)) for name in dir(opt) if not name.startswith('_')) file_name = os.path.join(opt.save_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('==> torch version: {}\n'.format(torch.__version__)) opt_file.write('==> cudnn version: {}\n'.format( torch.backends.cudnn.version())) opt_file.write('==> Cmd:\n') opt_file.write(str(sys.argv)) opt_file.write('\n==> Opt:\n') for k, v in sorted(args.items()): opt_file.write(' %s: %s\n' % (str(k), str(v))) log_dir = opt.save_dir + '/logs_{}'.format(time_str) if USE_TENSORBOARD: self.writer = tensorboardX.SummaryWriter(logdir=log_dir) else: if not os.path.exists(os.path.dirname(log_dir)): os.mkdir(os.path.dirname(log_dir)) if not os.path.exists(log_dir): os.mkdir(log_dir) self.log = open(log_dir + '/log.txt', 'w') try: os.system('cp {}/opt.txt {}/'.format(opt.save_dir, log_dir)) except: pass self.start_line = True def write(self, txt): if self.start_line: time_str = time.strftime('%Y-%m-%d-%H-%M') self.log.write('{}: {}'.format(time_str, txt)) else: self.log.write(txt) self.start_line = False if '\n' in txt: self.start_line = True self.log.flush() def close(self): self.log.close() def scalar_summary(self, tag, value, step): """Log a scalar variable.""" if USE_TENSORBOARD: self.writer.add_scalar(tag, value, step)