Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
CatVTON_pytorch
Commits
3144257c
Commit
3144257c
authored
Oct 11, 2024
by
mashun1
Browse files
catvton
parents
Changes
471
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
549 additions
and
0 deletions
+549
-0
detectron2/model_zoo/configs/common/models/mask_rcnn_fpn.py
detectron2/model_zoo/configs/common/models/mask_rcnn_fpn.py
+95
-0
detectron2/model_zoo/configs/common/models/mask_rcnn_vitdet.py
...tron2/model_zoo/configs/common/models/mask_rcnn_vitdet.py
+59
-0
detectron2/model_zoo/configs/common/models/panoptic_fpn.py
detectron2/model_zoo/configs/common/models/panoptic_fpn.py
+20
-0
detectron2/model_zoo/configs/common/models/retinanet.py
detectron2/model_zoo/configs/common/models/retinanet.py
+55
-0
detectron2/model_zoo/configs/common/optim.py
detectron2/model_zoo/configs/common/optim.py
+28
-0
detectron2/model_zoo/configs/common/train.py
detectron2/model_zoo/configs/common/train.py
+18
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py
...oo/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py
+9
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py
...oo/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py
...oo/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_100ep_LSJ.py
...zoo/configs/new_baselines/mask_rcnn_R_50_FPN_100ep_LSJ.py
+72
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py
...zoo/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
...zoo/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
..._zoo/configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
+29
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
+30
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
+14
-0
detectron2/model_zoo/configs/quick_schedules/README.md
detectron2/model_zoo/configs/quick_schedules/README.md
+8
-0
No files found.
Too many changes to show.
To preserve performance only
471 of 471+
files are displayed.
Plain diff
Email patch
detectron2/model_zoo/configs/common/models/mask_rcnn_fpn.py
0 → 100644
View file @
3144257c
from
detectron2.config
import
LazyCall
as
L
from
detectron2.layers
import
ShapeSpec
from
detectron2.modeling.meta_arch
import
GeneralizedRCNN
from
detectron2.modeling.anchor_generator
import
DefaultAnchorGenerator
from
detectron2.modeling.backbone.fpn
import
LastLevelMaxPool
from
detectron2.modeling.backbone
import
BasicStem
,
FPN
,
ResNet
from
detectron2.modeling.box_regression
import
Box2BoxTransform
from
detectron2.modeling.matcher
import
Matcher
from
detectron2.modeling.poolers
import
ROIPooler
from
detectron2.modeling.proposal_generator
import
RPN
,
StandardRPNHead
from
detectron2.modeling.roi_heads
import
(
StandardROIHeads
,
FastRCNNOutputLayers
,
MaskRCNNConvUpsampleHead
,
FastRCNNConvFCHead
,
)
from
..data.constants
import
constants
model
=
L
(
GeneralizedRCNN
)(
backbone
=
L
(
FPN
)(
bottom_up
=
L
(
ResNet
)(
stem
=
L
(
BasicStem
)(
in_channels
=
3
,
out_channels
=
64
,
norm
=
"FrozenBN"
),
stages
=
L
(
ResNet
.
make_default_stages
)(
depth
=
50
,
stride_in_1x1
=
True
,
norm
=
"FrozenBN"
,
),
out_features
=
[
"res2"
,
"res3"
,
"res4"
,
"res5"
],
),
in_features
=
"${.bottom_up.out_features}"
,
out_channels
=
256
,
top_block
=
L
(
LastLevelMaxPool
)(),
),
proposal_generator
=
L
(
RPN
)(
in_features
=
[
"p2"
,
"p3"
,
"p4"
,
"p5"
,
"p6"
],
head
=
L
(
StandardRPNHead
)(
in_channels
=
256
,
num_anchors
=
3
),
anchor_generator
=
L
(
DefaultAnchorGenerator
)(
sizes
=
[[
32
],
[
64
],
[
128
],
[
256
],
[
512
]],
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
],
offset
=
0.0
,
),
anchor_matcher
=
L
(
Matcher
)(
thresholds
=
[
0.3
,
0.7
],
labels
=
[
0
,
-
1
,
1
],
allow_low_quality_matches
=
True
),
box2box_transform
=
L
(
Box2BoxTransform
)(
weights
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
batch_size_per_image
=
256
,
positive_fraction
=
0.5
,
pre_nms_topk
=
(
2000
,
1000
),
post_nms_topk
=
(
1000
,
1000
),
nms_thresh
=
0.7
,
),
roi_heads
=
L
(
StandardROIHeads
)(
num_classes
=
80
,
batch_size_per_image
=
512
,
positive_fraction
=
0.25
,
proposal_matcher
=
L
(
Matcher
)(
thresholds
=
[
0.5
],
labels
=
[
0
,
1
],
allow_low_quality_matches
=
False
),
box_in_features
=
[
"p2"
,
"p3"
,
"p4"
,
"p5"
],
box_pooler
=
L
(
ROIPooler
)(
output_size
=
7
,
scales
=
(
1.0
/
4
,
1.0
/
8
,
1.0
/
16
,
1.0
/
32
),
sampling_ratio
=
0
,
pooler_type
=
"ROIAlignV2"
,
),
box_head
=
L
(
FastRCNNConvFCHead
)(
input_shape
=
ShapeSpec
(
channels
=
256
,
height
=
7
,
width
=
7
),
conv_dims
=
[],
fc_dims
=
[
1024
,
1024
],
),
box_predictor
=
L
(
FastRCNNOutputLayers
)(
input_shape
=
ShapeSpec
(
channels
=
1024
),
test_score_thresh
=
0.05
,
box2box_transform
=
L
(
Box2BoxTransform
)(
weights
=
(
10
,
10
,
5
,
5
)),
num_classes
=
"${..num_classes}"
,
),
mask_in_features
=
[
"p2"
,
"p3"
,
"p4"
,
"p5"
],
mask_pooler
=
L
(
ROIPooler
)(
output_size
=
14
,
scales
=
(
1.0
/
4
,
1.0
/
8
,
1.0
/
16
,
1.0
/
32
),
sampling_ratio
=
0
,
pooler_type
=
"ROIAlignV2"
,
),
mask_head
=
L
(
MaskRCNNConvUpsampleHead
)(
input_shape
=
ShapeSpec
(
channels
=
256
,
width
=
14
,
height
=
14
),
num_classes
=
"${..num_classes}"
,
conv_dims
=
[
256
,
256
,
256
,
256
,
256
],
),
),
pixel_mean
=
constants
.
imagenet_bgr256_mean
,
pixel_std
=
constants
.
imagenet_bgr256_std
,
input_format
=
"BGR"
,
)
detectron2/model_zoo/configs/common/models/mask_rcnn_vitdet.py
0 → 100644
View file @
3144257c
from
functools
import
partial
import
torch.nn
as
nn
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling
import
ViT
,
SimpleFeaturePyramid
from
detectron2.modeling.backbone.fpn
import
LastLevelMaxPool
from
.mask_rcnn_fpn
import
model
from
..data.constants
import
constants
model
.
pixel_mean
=
constants
.
imagenet_rgb256_mean
model
.
pixel_std
=
constants
.
imagenet_rgb256_std
model
.
input_format
=
"RGB"
# Base
embed_dim
,
depth
,
num_heads
,
dp
=
768
,
12
,
12
,
0.1
# Creates Simple Feature Pyramid from ViT backbone
model
.
backbone
=
L
(
SimpleFeaturePyramid
)(
net
=
L
(
ViT
)(
# Single-scale ViT backbone
img_size
=
1024
,
patch_size
=
16
,
embed_dim
=
embed_dim
,
depth
=
depth
,
num_heads
=
num_heads
,
drop_path_rate
=
dp
,
window_size
=
14
,
mlp_ratio
=
4
,
qkv_bias
=
True
,
norm_layer
=
partial
(
nn
.
LayerNorm
,
eps
=
1e-6
),
window_block_indexes
=
[
# 2, 5, 8 11 for global attention
0
,
1
,
3
,
4
,
6
,
7
,
9
,
10
,
],
residual_block_indexes
=
[],
use_rel_pos
=
True
,
out_feature
=
"last_feat"
,
),
in_feature
=
"${.net.out_feature}"
,
out_channels
=
256
,
scale_factors
=
(
4.0
,
2.0
,
1.0
,
0.5
),
top_block
=
L
(
LastLevelMaxPool
)(),
norm
=
"LN"
,
square_pad
=
1024
,
)
model
.
roi_heads
.
box_head
.
conv_norm
=
model
.
roi_heads
.
mask_head
.
conv_norm
=
"LN"
# 2conv in RPN:
model
.
proposal_generator
.
head
.
conv_dims
=
[
-
1
,
-
1
]
# 4conv1fc box head
model
.
roi_heads
.
box_head
.
conv_dims
=
[
256
,
256
,
256
,
256
]
model
.
roi_heads
.
box_head
.
fc_dims
=
[
1024
]
detectron2/model_zoo/configs/common/models/panoptic_fpn.py
0 → 100644
View file @
3144257c
from
detectron2.config
import
LazyCall
as
L
from
detectron2.layers
import
ShapeSpec
from
detectron2.modeling
import
PanopticFPN
from
detectron2.modeling.meta_arch.semantic_seg
import
SemSegFPNHead
from
.mask_rcnn_fpn
import
model
model
.
_target_
=
PanopticFPN
model
.
sem_seg_head
=
L
(
SemSegFPNHead
)(
input_shape
=
{
f
:
L
(
ShapeSpec
)(
stride
=
s
,
channels
=
"${....backbone.out_channels}"
)
for
f
,
s
in
zip
([
"p2"
,
"p3"
,
"p4"
,
"p5"
],
[
4
,
8
,
16
,
32
])
},
ignore_value
=
255
,
num_classes
=
54
,
# COCO stuff + 1
conv_dims
=
128
,
common_stride
=
4
,
loss_weight
=
0.5
,
norm
=
"GN"
,
)
detectron2/model_zoo/configs/common/models/retinanet.py
0 → 100644
View file @
3144257c
# -*- coding: utf-8 -*-
from
detectron2.config
import
LazyCall
as
L
from
detectron2.layers
import
ShapeSpec
from
detectron2.modeling.meta_arch
import
RetinaNet
from
detectron2.modeling.anchor_generator
import
DefaultAnchorGenerator
from
detectron2.modeling.backbone.fpn
import
LastLevelP6P7
from
detectron2.modeling.backbone
import
BasicStem
,
FPN
,
ResNet
from
detectron2.modeling.box_regression
import
Box2BoxTransform
from
detectron2.modeling.matcher
import
Matcher
from
detectron2.modeling.meta_arch.retinanet
import
RetinaNetHead
from
..data.constants
import
constants
model
=
L
(
RetinaNet
)(
backbone
=
L
(
FPN
)(
bottom_up
=
L
(
ResNet
)(
stem
=
L
(
BasicStem
)(
in_channels
=
3
,
out_channels
=
64
,
norm
=
"FrozenBN"
),
stages
=
L
(
ResNet
.
make_default_stages
)(
depth
=
50
,
stride_in_1x1
=
True
,
norm
=
"FrozenBN"
,
),
out_features
=
[
"res3"
,
"res4"
,
"res5"
],
),
in_features
=
[
"res3"
,
"res4"
,
"res5"
],
out_channels
=
256
,
top_block
=
L
(
LastLevelP6P7
)(
in_channels
=
2048
,
out_channels
=
"${..out_channels}"
),
),
head
=
L
(
RetinaNetHead
)(
# Shape for each input feature map
input_shape
=
[
ShapeSpec
(
channels
=
256
)]
*
5
,
num_classes
=
"${..num_classes}"
,
conv_dims
=
[
256
,
256
,
256
,
256
],
prior_prob
=
0.01
,
num_anchors
=
9
,
),
anchor_generator
=
L
(
DefaultAnchorGenerator
)(
sizes
=
[[
x
,
x
*
2
**
(
1.0
/
3
),
x
*
2
**
(
2.0
/
3
)]
for
x
in
[
32
,
64
,
128
,
256
,
512
]],
aspect_ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
8
,
16
,
32
,
64
,
128
],
offset
=
0.0
,
),
box2box_transform
=
L
(
Box2BoxTransform
)(
weights
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
anchor_matcher
=
L
(
Matcher
)(
thresholds
=
[
0.4
,
0.5
],
labels
=
[
0
,
-
1
,
1
],
allow_low_quality_matches
=
True
),
num_classes
=
80
,
head_in_features
=
[
"p3"
,
"p4"
,
"p5"
,
"p6"
,
"p7"
],
focal_loss_alpha
=
0.25
,
focal_loss_gamma
=
2.0
,
pixel_mean
=
constants
.
imagenet_bgr256_mean
,
pixel_std
=
constants
.
imagenet_bgr256_std
,
input_format
=
"BGR"
,
)
detectron2/model_zoo/configs/common/optim.py
0 → 100644
View file @
3144257c
import
torch
from
detectron2.config
import
LazyCall
as
L
from
detectron2.solver.build
import
get_default_optimizer_params
SGD
=
L
(
torch
.
optim
.
SGD
)(
params
=
L
(
get_default_optimizer_params
)(
# params.model is meant to be set to the model object, before instantiating
# the optimizer.
weight_decay_norm
=
0.0
),
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
1e-4
,
)
AdamW
=
L
(
torch
.
optim
.
AdamW
)(
params
=
L
(
get_default_optimizer_params
)(
# params.model is meant to be set to the model object, before instantiating
# the optimizer.
base_lr
=
"${..lr}"
,
weight_decay_norm
=
0.0
,
),
lr
=
1e-4
,
betas
=
(
0.9
,
0.999
),
weight_decay
=
0.1
,
)
detectron2/model_zoo/configs/common/train.py
0 → 100644
View file @
3144257c
# Common training-related configs that are designed for "tools/lazyconfig_train_net.py"
# You can use your own instead, together with your own train_net.py
train
=
dict
(
output_dir
=
"./output"
,
init_checkpoint
=
""
,
max_iter
=
90000
,
amp
=
dict
(
enabled
=
False
),
# options for Automatic Mixed Precision
ddp
=
dict
(
# options for DistributedDataParallel
broadcast_buffers
=
False
,
find_unused_parameters
=
False
,
fp16_compression
=
False
,
),
checkpointer
=
dict
(
period
=
5000
,
max_to_keep
=
100
),
# options for PeriodicCheckpointer
eval_period
=
5000
,
log_period
=
20
,
device
=
"cuda"
,
# ...
)
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
model
.
backbone
.
bottom_up
.
stages
.
depth
=
101
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_101_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_101_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_100ep_LSJ.py
0 → 100644
View file @
3144257c
import
detectron2.data.transforms
as
T
from
detectron2.config.lazy
import
LazyCall
as
L
from
detectron2.layers.batch_norm
import
NaiveSyncBatchNorm
from
detectron2.solver
import
WarmupParamScheduler
from
fvcore.common.param_scheduler
import
MultiStepParamScheduler
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.optim
import
SGD
as
optimizer
from
..common.train
import
train
# train from scratch
train
.
init_checkpoint
=
""
train
.
amp
.
enabled
=
True
train
.
ddp
.
fp16_compression
=
True
model
.
backbone
.
bottom_up
.
freeze_at
=
0
# SyncBN
# fmt: off
model
.
backbone
.
bottom_up
.
stem
.
norm
=
\
model
.
backbone
.
bottom_up
.
stages
.
norm
=
\
model
.
backbone
.
norm
=
"SyncBN"
# Using NaiveSyncBatchNorm becase heads may have empty input. That is not supported by
# torch.nn.SyncBatchNorm. We can remove this after
# https://github.com/pytorch/pytorch/issues/36530 is fixed.
model
.
roi_heads
.
box_head
.
conv_norm
=
\
model
.
roi_heads
.
mask_head
.
conv_norm
=
lambda
c
:
NaiveSyncBatchNorm
(
c
,
stats_mode
=
"N"
)
# fmt: on
# 2conv in RPN:
# https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/modeling/architecture/heads.py#L95-L97 # noqa: E501, B950
model
.
proposal_generator
.
head
.
conv_dims
=
[
-
1
,
-
1
]
# 4conv1fc box head
model
.
roi_heads
.
box_head
.
conv_dims
=
[
256
,
256
,
256
,
256
]
model
.
roi_heads
.
box_head
.
fc_dims
=
[
1024
]
# resize_and_crop_image in:
# https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/utils/input_utils.py#L127 # noqa: E501, B950
image_size
=
1024
dataloader
.
train
.
mapper
.
augmentations
=
[
L
(
T
.
ResizeScale
)(
min_scale
=
0.1
,
max_scale
=
2.0
,
target_height
=
image_size
,
target_width
=
image_size
),
L
(
T
.
FixedSizeCrop
)(
crop_size
=
(
image_size
,
image_size
)),
L
(
T
.
RandomFlip
)(
horizontal
=
True
),
]
# recompute boxes due to cropping
dataloader
.
train
.
mapper
.
recompute_boxes
=
True
# larger batch-size.
dataloader
.
train
.
total_batch_size
=
64
# Equivalent to 100 epochs.
# 100 ep = 184375 iters * 64 images/iter / 118000 images/ep
train
.
max_iter
=
184375
lr_multiplier
=
L
(
WarmupParamScheduler
)(
scheduler
=
L
(
MultiStepParamScheduler
)(
values
=
[
1.0
,
0.1
,
0.01
],
milestones
=
[
163889
,
177546
],
num_updates
=
train
.
max_iter
,
),
warmup_length
=
500
/
train
.
max_iter
,
warmup_factor
=
0.067
,
)
optimizer
.
lr
=
0.1
optimizer
.
weight_decay
=
4e-5
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_R_50_FPN_50ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
//=
2
# 100ep -> 50ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
//
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
23
,
w_a
=
38.65
,
w_0
=
96
,
w_m
=
2.43
,
group_width
=
40
,
norm
=
"SyncBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
22
,
w_a
=
31.41
,
w_0
=
96
,
w_m
=
2.24
,
group_width
=
64
,
se_ratio
=
0.25
,
norm
=
"SyncBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
3144257c
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
detectron2/model_zoo/configs/quick_schedules/README.md
0 → 100644
View file @
3144257c
These are quick configs for performance or accuracy regression tracking purposes.
*
`*instance_test.yaml`
: can train on 2 GPUs. They are used to test whether the training can
successfully finish. They are not expected to produce reasonable training results.
*
`*inference_acc_test.yaml`
: They should be run using
`--eval-only`
. They run inference using pre-trained models and verify
the results are as expected.
*
`*training_acc_test.yaml`
: They should be trained on 8 GPUs. They finish in about an hour and verify the training accuracy
is within the normal range.
Prev
1
…
17
18
19
20
21
22
23
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment