# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processing data for pretraining.""" import argparse import json import multiprocessing import os import sys import time import oneflow as flow from omegaconf import OmegaConf from libai.config import LazyCall try: import nltk nltk_available = True except ImportError: nltk_available = False sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from libai import tokenizer from libai.data.data_utils import indexed_dataset from libai.tokenizer import build_tokenizer # https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars): _period_context_fmt = r""" \S* # some word material %(SentEndChars)s # a potential sentence ending \s* # <-- THIS is what I changed (?=(?P %(NonWord)s # either other punctuation | (?P\S+) # <-- Normally you would have \s+ here ))""" class IdentitySplitter(object): def tokenize(self, *text): return text class Encoder(object): # split sentence, tokenize def __init__(self, args, cfg): self.args = args self.cfg = cfg def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = build_tokenizer(self.cfg) if self.args.split_sentences: if not nltk_available: print("NLTK is not available to split sentences.") exit() splitter = nltk.load("tokenizers/punkt/english.pickle") if self.args.keep_newlines: # this prevents punkt from eating newlines after sentences Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer( train_text=splitter._params, lang_vars=CustomLanguageVars() ) else: Encoder.splitter = splitter else: Encoder.splitter = IdentitySplitter() def encode(self, json_line): data = json.loads(json_line) ids = {} for key in self.args.json_keys: text = data[key] doc_ids = [] for sentence in Encoder.splitter.tokenize(text): sentence_ids = Encoder.tokenizer.encode(sentence) if len(sentence_ids) > 0: doc_ids.append(sentence_ids) if ( len(doc_ids) > 0 and self.args.append_eod ): # append eod token when at the enc of document doc_ids[-1].append(Encoder.tokenizer.eod) ids[key] = doc_ids return ids, len(json_line) def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title="input data") group.add_argument("--input", type=str, required=True, help="Path to input JSON") group.add_argument( "--json-keys", nargs="+", default=["text"], help="space separate listed of keys to extract from json", ) group.add_argument( "--split-sentences", action="store_true", help="Split documents into sentences." ) group.add_argument( "--keep-newlines", action="store_true", help="Keep newlines between sentences when splitting.", ) group = parser.add_argument_group(title="tokenizer") group.add_argument( "--tokenizer-name", type=str, required=True, choices=["BertTokenizer", "GPT2Tokenizer", "T5Tokenizer", "RobertaTokenizer"], help="What type of tokenizer to use.", ) group.add_argument("--vocab-file", type=str, default=None, help="Path to the vocab file") group.add_argument( "--merges-file", type=str, default=None, help="Path to the BPE merge file (if necessary).", ) group.add_argument("--do-lower-case", action="store_true", help="Whether to do lower case.") group.add_argument("--extra-ids", type=int, default=0, help="Number of extra ids.") group.add_argument( "--append-eod", action="store_true", help="Append an token to the end of a document.", ) group.add_argument( "--do-chinese-wwm", action="store_true", help="Whether to do whole word mask for Chinese." ) group = parser.add_argument_group(title="output data") group.add_argument( "--output-prefix", type=str, required=True, help="Path to binary output file without suffix", ) group.add_argument( "--dataset-impl", type=str, default="mmap", choices=["lazy", "cached", "mmap"] ) group = parser.add_argument_group(title="runtime") group.add_argument( "--workers", type=int, default=1, help="Number of worker processes to launch" ) group.add_argument( "--log-interval", type=int, default=100, help="Interval between progress updates", ) args = parser.parse_args() if args.tokenizer_name.startswith("Bert"): if not args.split_sentences: print("Bert tokenizer detected, are you sure you don't want to split sentences?") return args def parse_args_to_config(args): tokenization = OmegaConf.create() tokenization.tokenizer = LazyCall(getattr(tokenizer, args.tokenizer_name))( vocab_file="bert-base-chinese-vocab.txt", do_lower_case=True, do_chinese_wwm=True, ) tokenization.tokenizer.vocab_file = args.vocab_file tokenization.tokenizer.merges_file = args.merges_file tokenization.tokenizer.do_lower_case = args.do_lower_case tokenization.tokenizer.extra_id = args.extra_ids tokenization.tokenizer.do_chinese_wwm = args.do_chinese_wwm tokenization.append_eod = args.append_eod return tokenization def main(): args = get_args() cfg = parse_args_to_config(args) startup_start = time.time() print("Opening", args.input) fin = open(args.input, "r", encoding="utf-8") if nltk_available and args.split_sentences: print("Start downloading punkt data...") """Download url: http://www.nltk.org/nltk_data/, and default save path is `~/nltk_data/tokenizers/punkt.zip` """ nltk.download("punkt", quiet=True) print("End download") encoder = Encoder(args, cfg) tokenizer = build_tokenizer(cfg) pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) encoded_docs = pool.imap(encoder.encode, fin, 25) level = "document" if args.split_sentences: level = "sentence" print(f"Vocab size: {tokenizer.vocab_size}") print(f"Output prefix: {args.output_prefix}") output_bin_files = {} output_idx_files = {} builders = {} for key in args.json_keys: output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level) output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level) builders[key] = indexed_dataset.make_builder( output_bin_files[key], impl=args.dataset_impl, vocab_size=len(tokenizer) ) startup_end = time.time() proc_start = time.time() total_bytes_processed = 0 print("Time to startup:", startup_end - startup_start) for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): total_bytes_processed += bytes_processed for key, sentences in doc.items(): if len(sentences) == 0: continue for sentence in sentences: builders[key].add_item( flow.tensor(sentence, dtype=flow.int32) ) # write data into .bin file builders[key].end_document() if i % args.log_interval == 0: current = time.time() elapsed = current - proc_start mbs = total_bytes_processed / elapsed / 1024 / 1024 print( f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr, ) for key in args.json_keys: builders[key].finalize(output_idx_files[key]) # write data into .idx file if __name__ == "__main__": main()