# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import unittest import numpy as np import oneflow as flow import oneflow.unittest from omegaconf import DictConfig import libai from configs.common.models.roberta import cfg as libai_cfg from libai.models.utils import RobertaLoaderHuggerFace from libai.utils import distributed as dist from libai.utils.file_utils import get_data_from_cache from libai.utils.logger import setup_logger PRETRAINED_MODEL_URL = "http://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/model_utils_test/roberta_utils/pytorch_model.bin" # noqa PRETRAINED_MODEL_CONFIG_URL = "http://oneflow-static.oss-cn-beijing.aliyuncs.com/ci-files/dataset/libai/model_utils_test/roberta_utils/config.json" # noqa PRETRAINED_MODEL_MD5 = "73db58b6c51b028e0ee031f12261b51d" # noqa PRETRAINED_MODEL_CONFIG_MD5 = "a53c22291c7f25d5077260ad5ca4d5fa" # noqa TEST_OUTPUT = os.path.join(os.getenv("TEST_OUTPUT", "output_unittest"), "test_roberta_utils") setup_logger(distributed_rank=dist.get_rank()) class TestRobertaLoader(flow.unittest.TestCase): def setUp(self) -> None: cache_dir = os.path.join( os.getenv("ONEFLOW_TEST_CACHE_DIR", "./data_test"), "roberta_utils_data" ) self.pretrained_model_path = cache_dir # prepare dataset if dist.get_local_rank() == 0: # download dataset on main process of each node get_data_from_cache(PRETRAINED_MODEL_URL, cache_dir, md5=PRETRAINED_MODEL_MD5) get_data_from_cache( PRETRAINED_MODEL_CONFIG_URL, cache_dir, md5=PRETRAINED_MODEL_CONFIG_MD5 ) os.makedirs(TEST_OUTPUT, exist_ok=True) dist.synchronize() # prepare input data self.input_ids = [ [101, 2009, 1005, 1055, 2986, 2651, 1012, 102], [101, 2028, 12314, 3377, 102, 0, 0, 0], [101, 2064, 2017, 3305, 2009, 102, 0, 0], ] self.mask = [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]] @classmethod def tearDownClass(cls) -> None: if os.path.isdir(TEST_OUTPUT) and dist.get_local_rank() == 0: shutil.rmtree(TEST_OUTPUT) @flow.unittest.skip_unless_1n4d() def test_roberta_loader_with_data_tensor_parallel(self): # set distributed config dist_cfg = DictConfig( dict( data_parallel_size=2, tensor_parallel_size=2, pipeline_parallel_size=1, ) ) dist.setup_dist_util(dist_cfg) # load model load_func = RobertaLoaderHuggerFace( model=libai.models.RobertaModel, libai_cfg=libai_cfg, pretrained_model_path=self.pretrained_model_path, bias_gelu_fusion=False, bias_dropout_fusion=False, scale_mask_softmax_fusion=False, apply_query_key_layer_scaling=False, apply_residual_post_layernorm=True, amp_enabled=False, ) model = load_func.load() model.eval() input_ids = flow.tensor( self.input_ids, dtype=flow.long, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=model.embeddings.vocab_embeddings.weight.placement, ) mask = flow.tensor( self.mask, dtype=flow.bool, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=model.embeddings.vocab_embeddings.weight.placement, ) last_hidden_state, _ = model(input_ids, mask) self.assertTrue( np.allclose(np.array(341.5831), last_hidden_state.sum().data.numpy(), 1e-4, 1e-4) ) @flow.unittest.skip_unless_1n4d() def test_roberta_loader_with_data_tensor_pipeline_parallel(self): # set distributed config dist_cfg = DictConfig( dict( data_parallel_size=2, tensor_parallel_size=1, pipeline_parallel_size=2, pipeline_num_layers=12, ) ) dist.setup_dist_util(dist_cfg) # load model load_func = RobertaLoaderHuggerFace( model=libai.models.RobertaModel, libai_cfg=libai_cfg, pretrained_model_path=self.pretrained_model_path, bias_gelu_fusion=False, bias_dropout_fusion=False, scale_mask_softmax_fusion=False, apply_query_key_layer_scaling=False, apply_residual_post_layernorm=True, amp_enabled=False, ) model = load_func.load() model.eval() input_ids = flow.tensor( self.input_ids, dtype=flow.long, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=model.embeddings.vocab_embeddings.weight.placement, ) mask = flow.tensor( self.mask, dtype=flow.bool, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=model.embeddings.vocab_embeddings.weight.placement, ) last_hidden_state, _ = model(input_ids, mask) self.assertTrue( np.allclose(np.array(341.5831), last_hidden_state.sum().data.numpy(), 1e-4, 1e-4) ) if __name__ == "__main__": unittest.main()