# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import oneflow as flow from oneflow import nn from libai.models.utils.graph_base import GraphBase class demo_model(nn.Module): def __init__(self, input_dim=512, out_dim=3): super().__init__() self.linear1 = nn.Linear(input_dim, input_dim // 2) self.linear2 = nn.Linear(input_dim // 2, out_dim) def forward(self, x, label=None): x = x.to(dtype=flow.float32) x = self.linear1(x) x = self.linear2(x) if label is None: return x loss = self.get_loss(x) return loss def get_loss(self, x): return x.sum() def build_model(cfg): model = demo_model() placement = flow.env.all_device_placement("cuda") model = model.to_global(placement=placement, sbp=flow.sbp.broadcast) return model class GraphModel(GraphBase): def build(self, x, label=None): if self.is_train: loss = self.model(x, label) loss.backward() return loss else: return self.model(x)