# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
class EncodePattern(Enum):
"""encode pattern
bert pattern:
single sentence: [CLS] A [SEP]
pair of sentences: [CLS] A [SEP] B [SEP]
roberta/bart pattern:
single sentence: A
pair of sentences: A B
"""
bert_pattern = "S*E*E"
roberta_pattern = "S*EE*E"
@dataclass
class InputExample:
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
@dataclass(frozen=True)
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED,
`0` for MASKED (padded) tokens.
token_type_ids: (Optional) Segment token indices to indicate first and second
portions of the inputs. Only some models use them.
label: (Optional) Label corresponding to the input. Int for classification problems,
float for regression problems.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
labels: Optional[Union[int, float]] = None
class DataProcessor:
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of [`InputExample`] for the test set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8-sig") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
@classmethod
def _read_json(cls, input_file):
"""Reads a json list file."""
with open(input_file, "r") as f:
reader = f.readlines()
lines = []
for line in reader:
lines.append(json.loads(line.strip()))
return lines