# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import init_env # noqa import oneflow as flow from omegaconf import DictConfig from oneflow.utils.global_view import global_mode from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.opt import modeling_opt from libai.layers import Linear from libai.utils import distributed as dist # ------replace attention to libai------ temp_class = modeling_opt.OPTAttention class LiBaiOPTAttention(temp_class): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) embed_dim = kwargs["embed_dim"] bias = kwargs["bias"] self.k_proj = Linear(embed_dim, embed_dim, bias=bias, parallel="col", dtype=flow.float16) self.v_proj = Linear(embed_dim, embed_dim, bias=bias, parallel="col", dtype=flow.float16) self.q_proj = Linear(embed_dim, embed_dim, bias=bias, parallel="col", dtype=flow.float16) self.out_proj = Linear(embed_dim, embed_dim, bias=bias, parallel="row", dtype=flow.float16) modeling_opt.OPTAttention = LiBaiOPTAttention # ----------replace Decoder to libai ----- temp_class = modeling_opt.OPTDecoderLayer class LiBaiOPTDecoderLayer(temp_class): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) config = args[0] self.fc1 = Linear( self.embed_dim, config.ffn_dim, bias=config.enable_bias, parallel="col", dtype=flow.float16, ) self.fc2 = Linear( config.ffn_dim, self.embed_dim, bias=config.enable_bias, parallel="row", dtype=flow.float16, ) modeling_opt.OPTDecoderLayer = LiBaiOPTDecoderLayer if __name__ == "__main__": # set dist config parallel_config = DictConfig( dict( data_parallel_size=1, tensor_parallel_size=2, pipeline_parallel_size=1, # set to 1, unsupport pipeline parallel now pipeline_num_layers=None, device_type="cpu", ) ) dist.setup_dist_util(parallel_config) # initial and load model model = AutoModelForCausalLM.from_pretrained("facebook/opt-2.7b", torch_dtype=flow.float16) # set model to cuda dist.set_device_type("cuda") model._apply(dist.convert_to_distributed_default_setting) # initial tokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-2.7b", use_fast=False) # get input_ids prompt = "Hello, I'm am conscious and" input_ids = tokenizer(prompt, return_tensors="np").input_ids input_ids = flow.from_numpy(input_ids) input_ids = input_ids.to_global( sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=dist.get_layer_placement(0), ) # generate id placement_sbp_dict = dict( placement=flow.env.all_device_placement("cuda"), sbp=flow.sbp.broadcast, ) with global_mode(True, **placement_sbp_dict): generated_ids = model.generate(input_ids, max_length=30) out_put_ids = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) if dist.is_main_process(): print(out_put_ids)