# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Tuple import oneflow as flow from oneflow import nn from libai.layers.linear import Linear from libai.utils import distributed as dist from projects.T5.models.embedding import Embedding class MultiheadAttention(nn.Module): """Multi-head attention layer, support self attention and cross attention. Args: hidden_size: size of hidden state. num_attention_heads: number of attention heads. is_cross_attention: used to specify whether it is self attention or cross attention. Defaults to False. attention_dropout_prob: dropout probability of attention weights. Defaults to 0.0. output_dropout_prob: dropout probability of output. Defaults to 0.0. init_method: method to initialize the input layer weights. Defaults to ``init.xavier_normal_``. output_layer_init_method: method to initialize the output layer weights. If None, use ``init_method``. layer_idx: a layer_idx sign which determines the placements. It will be used in pipeline parallelism. Defaults to 0. """ def __init__( self, hidden_size, num_attention_heads, head_size, relative_attention_num_buckets, is_cross_attention=False, attention_dropout_prob=0.0, output_dropout_prob=0.0, init_method=nn.init.xavier_normal_, output_layer_init_method=None, *, layer_idx=0, has_relative_attention_bias=False, is_decoder=False, ): super().__init__() self.hidden_size = hidden_size self.relative_attention_num_buckets = relative_attention_num_buckets self.has_relative_attention_bias = has_relative_attention_bias self.is_decoder = is_decoder self.attention_dropout_prob = attention_dropout_prob if output_layer_init_method is None: output_layer_init_method = init_method self.num_heads = num_attention_heads self.head_size = head_size self.dropout = nn.Dropout(p=attention_dropout_prob) self.norm_factor = 1.0 / math.sqrt(float(self.head_size)) self.is_cross_attention = is_cross_attention self.output_dropout = nn.Dropout(p=output_dropout_prob) if self.is_cross_attention: self.query = Linear( self.hidden_size, self.num_heads * self.head_size, bias=False, parallel="col", init_method=init_method, layer_idx=layer_idx, ) self.key_value = Linear( self.hidden_size, self.num_heads * self.head_size * 2, bias=False, parallel="col", init_method=init_method, layer_idx=layer_idx, ) else: self.query_key_value = Linear( self.hidden_size, self.num_heads * self.head_size * 3, bias=False, parallel="col", init_method=init_method, layer_idx=layer_idx, ) self.dense = Linear( self.num_heads * self.head_size, self.hidden_size, bias=False, parallel="row", init_method=output_layer_init_method, skip_bias_add=False, layer_idx=layer_idx, ) if self.has_relative_attention_bias: self.relative_attention_bias = Embedding( self.relative_attention_num_buckets, self.num_heads, layer_idx=layer_idx ) def forward( self, hidden_states: flow.Tensor, encoder_states: flow.Tensor = None, attention_mask: flow.Tensor = None, past_key_value: Tuple[flow.Tensor, flow.Tensor] = None, use_cache: bool = False, position_bias=None, query_length=None, ): """ Args: hidden_states (flow.Tensor): shape is [bsz, tgt_len, hidden_size]. encoder_states (flow.Tensor, optional): shape is [bsz, src_len, hidden_size]. Defaults to None. attention_mask (flow.Tensor, optional): shape is [bsz, 1, tgt_len, src_len]. It should be the combination of padding mask and casual mask. It is the padding mask of source input when used with self-attention in encoder. And it is the combination of padding mask of target input and casual mask when used with self-attention in decoder. It is the padding mask of source input when used with cross-attention in decoder. Defaults to None. past_key_value (Tuple[flow.Tensor, flow.Tensor], optional): tuple of key and value, each shape is [bsz, num_heads, src_len, head_size]. Defaults to None. use_cache (bool, optional): it will be set to True, when the model is in the inference phase and used for incremental decoding. Defaults to False. """ # hidden_states, encoder_states: [S(0), B] # attention_mask: [S(0), B] if encoder_states is not None: encoder_states = encoder_states.to_global(placement=hidden_states.placement) if attention_mask is not None: attention_mask = attention_mask.to_global(placement=hidden_states.placement) bsz, real_seq_length = hidden_states.size()[:2] if past_key_value is not None: assert ( len(past_key_value) == 2 ), "past_key_value should have 2 past states: keys and values." f"Got {len(past_key_value)} past states.\n" real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if encoder_states is None else encoder_states.shape[1] if self.is_cross_attention: # if it is cross attention, key and value should be calculated only once, and the # result can be reused. query = self.query(hidden_states) query = query.view(bsz, -1, self.num_heads, self.head_size) query = query.permute(0, 2, 1, 3) if past_key_value is not None: key, value = past_key_value elif encoder_states is not None: key_value = self.key_value(encoder_states) key_value = key_value.view(bsz, -1, self.num_heads, 2 * self.head_size) key_value = key_value.permute(0, 2, 1, 3) key, value = flow.chunk(key_value, chunks=2, dim=-1) else: raise ValueError( "past_key_value and encoder_states cannot be None at the same time." ) else: # if it is self attention, query, key, and value are all obtained from hidden_states. # when in the inference phase of an incremental decoder, # hidden_states is the last-added state, # the full key and value could be obtained by concatenating with past_key_value. query_key_value = self.query_key_value(hidden_states) query_key_value = query_key_value.view(bsz, -1, self.num_heads, 3 * self.head_size) query_key_value = query_key_value.permute( 0, 2, 1, 3 ) # [bsz, num_heads, src_len, 3 * head_size] query, key, value = flow.chunk(query_key_value, chunks=3, dim=-1) if past_key_value is not None: past_key, past_value = past_key_value key = flow.cat((past_key.type_as(key), key), dim=2) value = flow.cat((past_value.type_as(value), value), dim=2) # query, key, value: [S(0), S(1)], shape: [bsz, num_heads, seq_length, head_size] if use_cache: past_key_value = (key, value) # [bsz, num_heads, tgt_len, src_len] with [S(0), S(1)] attention_scores = flow.matmul(query, key, transpose_b=True) if position_bias is None: if not self.has_relative_attention_bias: position_bias = flow.zeros( (1, self.num_heads, real_seq_length, key_length), sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=attention_scores.placement, ) else: position_bias = self.compute_bias( real_seq_length, key_length, placement=attention_mask.placement ) if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] position_bias = position_bias + (1 - attention_mask) * -1000 position_bias = position_bias.to_global(placement=attention_scores.placement) attention_scores = attention_scores + position_bias # [S(0), S(1)] x [S(0), B] = [S(0), S(1)] if attention_mask is not None: attention_scores = flow.mul(attention_scores, attention_mask) attention_scores = attention_scores - 10000.0 * (1 - attention_mask) # TODO(xingyu.liao): graph will occur `where_scalar` errors # when using `masked_fill` # attention_scores = attention_scores.masked_fill(1 - attention_mask, -10000.0) attention_weights = flow.softmax(attention_scores, dim=-1) # [bsz, num_heads, tgt_len, src_len] attention_weights = self.dropout(attention_weights) else: attention_weights = flow.softmax(attention_scores, dim=-1) # [bsz, num_heads, tgt_len, src_len] attention_weights = self.dropout(attention_weights) # Context shape: [bsz, num_heads, tgt_len, head_size] with [S(0), S(1)] context = flow.matmul(attention_weights, value) # Change shape: [bsz, num_heads, tgt_len, head_size] -> [bsz, tgt_len, num_heads, head_size] context = context.transpose(1, 2) # Concat multi-head results from # [bsz, tgt_len, num_heads, head_size] -> [bsz, tgt_len, num_heads * head_size] # SBP sign: [S(0), S(2)] # [S(0), S(2)] x [B, S(0)] = [S(0), P] -> [S(0), B] output = self.dense(context.flatten(2)) output = self.output_dropout(output) if use_cache: output = (output, past_key_value) output = (output,) + (position_bias,) return output def extra_repr(self) -> str: return "hidden_size={}, num_heads={}, is_cross_attention={}".format( self.hidden_size, self.num_heads, self.is_cross_attention, ) def _relative_position_bucket( self, relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): # relative_position: (seq_len, seq_len) relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets = ( relative_buckets + (relative_position > 0).to(flow.long) * num_buckets ) relative_position = flow.abs(relative_position) else: relative_position = ( -1 * flow.min( relative_position, flow.zeros( relative_position.size(), sbp=relative_position.sbp, placement=relative_position.placement, ), ).to(flow.long) ) max_exact = num_buckets // 2 is_small = relative_position < max_exact relative_postion_if_large = max_exact + ( flow.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(flow.long) relative_postion_if_large = flow.min( relative_postion_if_large, flow.zeros( relative_postion_if_large.size(), dtype=relative_postion_if_large.dtype, sbp=relative_postion_if_large.sbp, placement=relative_postion_if_large.placement, ).fill_(num_buckets - 1), ) relative_buckets = relative_buckets + flow.where( is_small, relative_position, relative_postion_if_large ) return relative_buckets def compute_bias(self, query_length, key_length, placement=None): """Compute binned relative position bias""" context_position = flow.arange( query_length, dtype=flow.long, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=placement, ) memory_position = flow.arange( key_length, dtype=flow.long, sbp=dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]), placement=placement, ) relative_position = ( memory_position[None, :] - context_position[:, None] ) # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, ) # shape (query_length, key_length) values = self.relative_attention_bias( relative_position_bucket ) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, query_length, key_length) return values