import math import oneflow as flow from oneflow.optim import Optimizer class RAdam(Optimizer): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) self.degenerated_to_sgd = degenerated_to_sgd if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): for param in params: if "betas" in param and ( param["betas"][0] != betas[0] or param["betas"][1] != betas[1] ): param["buffer"] = [[None, None, None] for _ in range(10)] defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)], ) super(RAdam, self).__init__(params, defaults) def __setstate__(self, state): super(RAdam, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError("RAdam does not support sparse gradients") p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state["step"] = 0 state["exp_avg"] = flow.zeros_like(p_data_fp32) state["exp_avg_sq"] = flow.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state["step"] += 1 buffered = group["buffer"][int(state["step"] % 10)] if state["step"] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state["step"] beta2_t = beta2 ** state["step"] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state["step"]) elif self.degenerated_to_sgd: step_size = 1.0 / (1 - beta1 ** state["step"]) else: step_size = -1 buffered[2] = step_size # more conservative since it's an approximated value if N_sma >= 5: if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) denom = exp_avg_sq.sqrt().add_(group["eps"]) p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom) p.data.copy_(p_data_fp32) elif step_size > 0: if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) p_data_fp32.add_(-step_size * group["lr"], exp_avg) p.data.copy_(p_data_fp32) return loss