# take from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py # to give users a quick easy start to training DALL-E without doing BPE import gzip import html import os from functools import lru_cache from pathlib import Path import ftfy import oneflow as flow import regex as re from .utils import import_or_print_error # OpenAI simple tokenizer @lru_cache() def default_bpe(): return os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt.gz" ) @lru_cache() def bytes_to_unicode(): bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r"\s+", " ", text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path=default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = ( gzip.open(bpe_path).read().decode("utf-8").split("\n") ) # Path(bpe_path).read_text(encoding='utf8').split('\n') merges = merges[1 : 49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + "" for v in vocab] for merge in merges: vocab.append("".join(merge)) vocab.extend(["<|startoftext|>", "<|endoftext|>"]) self.vocab_size = 49408 self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {"<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>"} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", # noqa re.IGNORECASE, ) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + "",) pairs = get_pairs(word) if not pairs: return token + "" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def decode(self, tokens, remove_start_end=True, pad_tokens=set()): if flow.is_tensor(tokens): tokens = tokens.tolist() if remove_start_end: tokens = [token for token in tokens if token not in (49406, 40407, 0)] text = "".join([self.decoder[token] for token in tokens if token not in pad_tokens]) text = ( bytearray([self.byte_decoder[c] for c in text]) .decode("utf-8", errors="replace") .replace("", " ") ) return text def tokenize(self, texts, context_length=256, truncate_text=False): if isinstance(texts, str): texts = [texts] all_tokens = [self.encode(text) for text in texts] result = flow.zeros(len(all_tokens), context_length, dtype=flow.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError( f"Input {texts[i]} is too long for context length {context_length}" ) result[i, : len(tokens)] = flow.tensor(tokens) return result # tokenizer = SimpleTokenizer() # YTTM tokenizer class YttmTokenizer: def __init__(self, bpe_path=None): bpe_path = Path(bpe_path) assert bpe_path.exists(), f"BPE json path {str(bpe_path)} does not exist" self.yttm = import_or_print_error( "youtokentome", "you need to install youtokentome by `pip install youtokentome`" ) tokenizer = self.yttm.BPE(model=str(bpe_path)) self.tokenizer = tokenizer self.vocab_size = tokenizer.vocab_size() def decode(self, tokens, pad_tokens=set()): if flow.is_tensor(tokens): tokens = tokens.tolist() return self.tokenizer.decode(tokens, ignore_ids=pad_tokens.union({0})) def encode(self, texts): encoded = self.tokenizer.encode(texts, output_type=self.yttm.OutputType.ID) return list(map(flow.tensor, encoded)) def tokenize(self, texts, context_length=256, truncate_text=False): if isinstance(texts, str): texts = [texts] all_tokens = self.encode(texts) result = flow.zeros(len(all_tokens), context_length, dtype=flow.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError( f"Input {texts[i]} is too long for context length {context_length}" ) result[i, : len(tokens)] = flow.tensor(tokens) return result