# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import oneflow as flow from oneflow import nn from libai.utils import distributed as dist class Conv1D(nn.Module): def __init__( self, in_features, out_features, bias=True, parallel="data", init_method=nn.init.xavier_normal_, skip_bias_add=False, dtype=flow.float32, *, layer_idx=0, ): super().__init__() self.in_features = in_features self.out_features = out_features self.parallel = parallel self.skip_bias_add = skip_bias_add if parallel == "col": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(1)]) bias_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]) elif parallel == "row": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(0)]) bias_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(0)]) elif parallel == "data": weight_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]) bias_sbp = dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]) else: raise KeyError(f"{parallel} is not supported! Only support ('data', 'row' and 'col')") self.weight = flow.nn.Parameter( flow.empty( (in_features, out_features), dtype=dtype, placement=dist.get_layer_placement(layer_idx), # for pipeline parallelism placement sbp=weight_sbp, ) ) if os.getenv("ONEFLOW_LINEAR_EMBEDDING_SKIP_INIT", "0") != "1": init_method(self.weight) self.bias = ( flow.nn.Parameter( flow.zeros( (out_features,), dtype=dtype, placement=dist.get_layer_placement(layer_idx), sbp=bias_sbp, ) ) if bias else None ) def forward(self, x): if dist.same_sbp(self.weight.sbp, dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(1)])): if self.weight.sbp[-1] == flow.sbp.split(1): x_sbp = x.sbp[:-1] + (flow.sbp.broadcast,) x = x.to_global(sbp=x_sbp) x = x.to_global(grad_sbp=x.sbp) x = flow.matmul(x, self.weight) elif dist.same_sbp( self.weight.sbp, dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.split(0)]) ): if self.weight.sbp[-1] == flow.sbp.split(0): x_sbp = x.sbp[:-1] + (flow.sbp.split(x.ndim - 1),) x = x.to_global(sbp=x_sbp) out_sbp = x.sbp[:-1] + (flow.sbp.broadcast,) else: out_sbp = x.sbp x = flow.matmul(x, self.weight) x = x.to_global(sbp=out_sbp) elif dist.same_sbp( self.weight.sbp, dist.get_nd_sbp([flow.sbp.broadcast, flow.sbp.broadcast]) ): x = x.to_global(grad_sbp=x.sbp) x = flow.matmul(x, self.weight) else: x = flow.matmul(x, self.weight) if self.bias is not None: if self.skip_bias_add: return x, self.bias else: return x + self.bias else: return x def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}, parallel={}".format( self.in_features, self.out_features, self.bias is not None, self.parallel, )