## Changelog ### v0.2.0 (07/07/2022) **New Features:** - Support evaluation enabled and set `eval_iter` - Support customized sampler in `config.py` - Support rdma for pipeline-model-parallel - Support multi fused kernel - fused_scale_mask_softmax_dropout - fused_scale_tril_softmax_mask_scale - fused_self_attention in branch `libai_bench` - User Experience Optimization - Optimization for training throughput, see [benchmark](https://libai.readthedocs.io/en/latest/tutorials/get_started/Benchmark.html) for more details **New Supported Models:** - Support 3D parallel [Roberta](https://arxiv.org/abs/1907.11692) model - Support 2D parallel (data parallel + tensor model parallel) [SimCSE](https://arxiv.org/abs/2104.08821) model - Support Data parallel [MAE](https://arxiv.org/abs/2111.06377) model - Support Data parallel [MOCOV3](https://arxiv.org/abs/2104.02057) model ### v0.1.0 (22/03/2022) **New Features:** - Support Data Parallelism - Support 1D Tensor Parallelism - Support Pipeline Parallelism - Unified distributed Layers for both single-GPU and multi-GPU training - `LazyConfig` system for more flexible syntax and no predefined structures - Easy-to-use trainer and engine - Support both CV and NLP data processing - Mixed Precision Training - Activation Checkpointing - Gradient Accumulation - Gradient Clipping - Zero Redundancy Optimizer (ZeRO) **Supported Models:** - Support 3D parallel [BERT](https://arxiv.org/abs/1810.04805) model - Support 3D parallel [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model - Support 3D parallel [T5](https://arxiv.org/abs/1910.10683) model - Support 3D parallel [Vision Transformer](https://arxiv.org/abs/2010.11929) model - Support Data parallel [Swin Transformer](https://arxiv.org/abs/2103.14030) model - Support finetune task in [QQP project](https://github.com/Oneflow-Inc/libai/tree/main/projects/QQP) - Support text classification task in [text classification project](https://github.com/Oneflow-Inc/libai/tree/main/projects/text_classification)