#! -*- coding:utf-8 -*- # 利用pca压缩句向量 # 从768维压缩到128维,指标从81.82下降到80.10 from task_sentence_embedding_sup_CosineMSELoss import model, train_dataloader, Model, device, valid_dataloader, evaluate from bert4torch.snippets import get_pool_emb from sklearn.decomposition import PCA import numpy as np import torch import torch.nn as nn new_dimension = 128 # 压缩到的维度 train_embeddings = [] for token_ids_list, labels in train_dataloader: for token_ids in token_ids_list: train_embeddings.append(model.encode(token_ids)) # if len(train_embeddings) >= 20: # break train_embeddings = torch.cat(train_embeddings, dim=0).cpu().numpy() print('train_embeddings done, start pca training...') pca = PCA(n_components=new_dimension) pca.fit(train_embeddings) pca_comp = np.asarray(pca.components_) print('PCA training done...') # 定义bert上的模型结构 class NewModel(Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dense = nn.Linear(768, new_dimension, bias=False) self.dense.weight = torch.nn.Parameter(torch.tensor(pca_comp, device=device)) def encode(self, token_ids): self.eval() with torch.no_grad(): hidden_state, pool_cls = self.bert([token_ids]) attention_mask = token_ids.gt(0).long() output = get_pool_emb(hidden_state, pool_cls, attention_mask, self.pool_method) output = self.dense(output) return output new_model = NewModel().to(device) new_model.load_weights('best_model.pt', strict=False) print('Start evaludating...') val_consine = evaluate(new_model, valid_dataloader) print(f'val_consine: {val_consine:.5f}\n')