#! -*- coding: utf-8 -*- # 基础测试:mlm预测 from bert4torch.models import build_transformer_model from bert4torch.tokenizers import Tokenizer import torch # 加载模型,请更换成自己的路径 root_model_path = "F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12" vocab_path = root_model_path + "/vocab.txt" config_path = root_model_path + "/bert_config.json" checkpoint_path = root_model_path + '/pytorch_model.bin' # 建立分词器 tokenizer = Tokenizer(vocab_path, do_lower_case=True) model = build_transformer_model(config_path, checkpoint_path, with_mlm='softmax') # 建立模型,加载权重 token_ids, segments_ids = tokenizer.encode("科学技术是第一生产力") token_ids[3] = token_ids[4] = tokenizer._token_mask_id print(''.join(tokenizer.ids_to_tokens(token_ids))) tokens_ids_tensor = torch.tensor([token_ids]) segment_ids_tensor = torch.tensor([segments_ids]) # 需要传入参数with_mlm model.eval() with torch.no_grad(): _, probas = model([tokens_ids_tensor, segment_ids_tensor]) result = torch.argmax(probas[0, 3:5], dim=-1).numpy() print(tokenizer.decode(result))