from transformers import XLNetTokenizer, XLNetModel import torch pretrained_model = "F:/Projects/pretrain_ckpt/xlnet/[hit_torch_base]--chinese-xlnet-base" tokenizer = XLNetTokenizer.from_pretrained(pretrained_model) model = XLNetModel.from_pretrained(pretrained_model) inputs = tokenizer(["你好啊,我叫张三", "天气不错啊"], padding=True, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state print('--------transformers last_hidden_state--------\n', last_hidden_states) # ----------------------bert4torch配置---------------------- from bert4torch.models import build_transformer_model config_path = f'{pretrained_model}/bert4torch_config.json' checkpoint_path = f'{pretrained_model}/pytorch_model.bin' model = build_transformer_model( config_path, checkpoint_path=checkpoint_path, model='xlnet', # with_lm=True token_pad_ids=tokenizer.pad_token_id, ) print('--------bert4torch last_hidden_state--------\n', model.predict([inputs['input_ids'], inputs['token_type_ids']]))