import oneflow as flow from oneflow import nn import libai def cosine_similarity(x, y, dim=-1): return flow.sum(x * y, dim=dim) / (flow.linalg.norm(x, dim=dim) * flow.linalg.norm(y, dim=dim)) class MLPLayer(nn.Module): def __init__(self, cfg): super().__init__() self.dense = libai.layers.Linear( cfg.hidden_size, cfg.hidden_size, bias=True, parallel="row", layer_idx=-1 ) self.activation = libai.layers.build_activation("tanh") def forward(self, features): x = self.dense(features) x = self.activation(x) return x