import math import oneflow as flow from oneflow.optim import Optimizer class Ranger(Optimizer): def __init__( self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(0.95, 0.999), eps=1e-5, weight_decay=0, ): # parameter checks if not 0.0 <= alpha <= 1.0: raise ValueError(f"Invalid slow update rate: {alpha}") if not 1 <= k: raise ValueError(f"Invalid lookahead steps: {k}") if not lr > 0: raise ValueError(f"Invalid Learning Rate: {lr}") if not eps > 0: raise ValueError(f"Invalid eps: {eps}") defaults = dict( lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay, ) super().__init__(params, defaults) # adjustable threshold self.N_sma_threshhold = N_sma_threshhold # now we can get to work... # removed as we now use step from RAdam...no need for duplicate step counting # for group in self.param_groups: # group["step_counter"] = 0 # print("group step counter init") # look ahead params self.alpha = alpha self.k = k # radam buffer for state self.radam_buffer = [[None, None, None] for ind in range(10)] def __setstate__(self, state): print("set state called") super(Ranger, self).__setstate__(state) def step(self, closure=None): loss = None for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError("Ranger optimizer does not support sparse gradients") p_data_fp32 = p.data.float() state = self.state[p] # get state dict for this param if len(state) == 0: state["step"] = 0 state["exp_avg"] = flow.zeros_like(p_data_fp32) state["exp_avg_sq"] = flow.zeros_like(p_data_fp32) # look ahead weight storage now in state dict state["slow_buffer"] = p.data.clone() else: state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].type_as(p_data_fp32) # begin computations exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] # compute variance mov avg exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) # compute mean moving avg exp_avg.mul_(beta1).add_(1 - beta1, grad) state["step"] += 1 buffered = self.radam_buffer[int(state["step"] % 10)] if state["step"] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state["step"] beta2_t = beta2 ** state["step"] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1 - beta2_t) buffered[1] = N_sma if N_sma > self.N_sma_threshhold: step_size = math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state["step"]) else: step_size = 1.0 / (1 - beta1 ** state["step"]) buffered[2] = step_size if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) if N_sma > self.N_sma_threshhold: denom = exp_avg_sq.sqrt().add_(group["eps"]) p_data_fp32.addcdiv_(-step_size * group["lr"], exp_avg, denom) else: p_data_fp32.add_(-step_size * group["lr"], exp_avg) p.data.copy_(p_data_fp32) # integrated look ahead... # we do it at the param level instead of group level if state["step"] % group["k"] == 0: slow_p = state["slow_buffer"] # get access to slow param tensor slow_p.add_( self.alpha, p.data - slow_p ) # (fast weights - slow weights) * alpha p.data.copy_(slow_p) # copy interpolated weights to RAdam param tensor return loss