# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import logging from collections import OrderedDict import numpy as np from scipy.stats import pearsonr, spearmanr from libai.utils import distributed as dist from .evaluator import DatasetEvaluator logger = logging.getLogger(__name__) class RegEvaluator(DatasetEvaluator): def __init__(self): self._predictions = [] def reset(self): self._predictions = [] def process(self, inputs, outputs): pred_logits = outputs["prediction_scores"] labels = inputs["labels"] # measure accuracy preds = pred_logits.cpu().topk(1)[1].squeeze(1).numpy() labels = labels.cpu().numpy() self._predictions.append({"preds": preds, "labels": labels}) def evaluate(self): if not dist.is_main_process(): return {} else: predictions = self._predictions preds = np.array([]) labels = np.array([]) for prediction in predictions: preds = np.concatenate((preds, prediction["preds"])) labels = np.concatenate((labels, prediction["labels"])) pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] corr = (pearson_corr + spearman_corr) / 2 self._results = OrderedDict() self._results["pearson"] = pearson_corr self._results["spearman"] = spearman_corr self._results["corr"] = corr return copy.deepcopy(self._results)