from libai.config import LazyCall from libai.evaluation import PPLEvaluator from .common.models.roberta import pretrain_model as model from .common.models.graph import graph from .common.train import train from .common.optim import optim from .common.data.roberta_dataset import dataloader, tokenization vocab_file = "./data_test/roberta_data/roberta-vocab.json" merge_files = "./data_test/roberta_data/roberta-merges.txt" data_prefix = "./data_test/roberta_data/loss_compara_content_sentence" tokenization.tokenizer.vocab_file = vocab_file tokenization.tokenizer.merges_file = merge_files dataloader.train.dataset[0].data_prefix = data_prefix dataloader.train.dataset[0].indexed_dataset.data_prefix = data_prefix # RoBERTa model config model.cfg.num_attention_heads = 12 model.cfg.hidden_size = 768 model.cfg.hidden_layers = 8 train.input_placement_device = "cpu" # parallel strategy settings train.dist.data_parallel_size = 8 train.dist.tensor_parallel_size = 1 train.dist.pipeline_parallel_size = 1 train.dist.pipeline_num_layers = model.cfg.hidden_layers train.train_micro_batch_size = 2 train.amp.enabled = True for ds in dataloader.train.dataset: ds.max_seq_length = model.cfg.max_position_embeddings train.evaluation.evaluator = LazyCall(PPLEvaluator)() train.output_dir = "output/roberta_output"