from libai.config import LazyCall from libai.evaluation import PPLEvaluator from .common.models.bert import pretrain_model as model from .common.models.graph import graph from .common.train import train from .common.optim import optim from .common.data.bert_dataset import dataloader, tokenization vocab_file = "./nlp_data/bert-base-chinese-vocab.txt" data_prefix = "./nlp_data/data/loss_compara_content_sentence" tokenization.tokenizer.vocab_file = vocab_file dataloader.train.dataset[0].data_prefix = data_prefix dataloader.train.dataset[0].indexed_dataset.data_prefix = data_prefix # Bert-large model config model.cfg.num_attention_heads = 16 model.cfg.hidden_size = 768 model.cfg.hidden_layers = 8 train.input_placement_device = "cpu" train.dist.pipeline_num_layers = model.cfg.hidden_layers train.train_micro_batch_size = 16 train.amp.enabled = True for ds in dataloader.train.dataset: ds.max_seq_length = model.cfg.max_position_embeddings train.evaluation.evaluator = LazyCall(PPLEvaluator)() train.output_dir = "output/bert_output"