import argparse
import builtins
import datetime
import json
import os
import re
import struct
import sys
import threading
import time
from copy import deepcopy
from threading import Thread, Timer
from typing import Optional
import numpy as np
import torch
import yaml
from huggingface_hub import snapshot_download
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers.generation import GenerationConfig
import torchaudio
from flask import Flask, render_template, request
from flask_socketio import SocketIO, disconnect, emit
from loguru import logger
from vita_audio.data.processor.audio_processor import add_audio_input_contiguous
from vita_audio.tokenizer import get_audio_tokenizer
from web.parms import GlobalParams
from web.pem import generate_self_signed_cert
def get_args():
parser = argparse.ArgumentParser(description="VITA-Audio")
parser.add_argument("--ip", required=True, help="ip of server")
parser.add_argument("--port", required=True, help="port of server")
parser.add_argument("--max_users", type=int, default=2)
parser.add_argument("--timeout", type=int, default=600)
args = parser.parse_args()
logger.info(args)
return args
target_sample_rate = 16000
# init parms
args = get_args()
# 先设定一个死地址
model_name_or_path = "VITA-MLLM/VITA-Audio-Plus-Boost"
device_map = "auto"
sys.path.append("third_party/GLM-4-Voice/")
sys.path.append("third_party/GLM-4-Voice/cosyvoice/")
sys.path.append("third_party/GLM-4-Voice/third_party/Matcha-TTS/")
audio_tokenizer_path = snapshot_download(repo_id="THUDM/glm-4-voice-tokenizer")
flow_path = snapshot_download(repo_id="THUDM/glm-4-voice-decoder")
audio_tokenizer_rank = 0
audio_tokenizer_type = "glm4voice"
audio_tokenizer_type = "sensevoice_glm4voice"
prompt_audio_path = None
torch_dtype = torch.bfloat16
audio_tokenizer = get_audio_tokenizer(
audio_tokenizer_path,
audio_tokenizer_type,
flow_path=flow_path,
rank=audio_tokenizer_rank,
)
audio_tokenizer.load_model()
chat_template = """
{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{\\\"name\\\": , \\\"arguments\\\": }\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n
"""
add_generation_prompt = True
default_system_message = []
luke_system_message = [
{
"role": "system",
"content": "Your Name: Luke\nYour Gender: male\n\nRespond in a text-audio interleaved manner.",
},
]
mode = "luke"
message = ""
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True,
chat_template=chat_template,
)
# logger.info(f"{tokenizer=}")
logger.info(f"{tokenizer.get_chat_template()=}")
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
device_map=device_map,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
).eval()
# logger.info("model", model)
logger.info(f"{model.config.model_type=}")
# logger.info(f"{model.hf_device_map=}")
# TTS_END_LOCK = False
model.generation_config = GenerationConfig.from_pretrained(
model_name_or_path, trust_remote_code=True
)
model.generation_config.max_new_tokens = 8192
model.generation_config.chat_format = "chatml"
model.generation_config.max_window_size = 8192
model.generation_config.use_cache = True
# model.generation_config.use_cache = False
model.generation_config.do_sample = True
model.generation_config.temperature = 1.0
model.generation_config.top_k = 50
model.generation_config.top_p = 1.0
model.generation_config.num_beams = 1
model.generation_config.pad_token_id = tokenizer.pad_token_id
# max users to connect
MAX_USERS = args.max_users
# timeout to each user
TIMEOUT = args.timeout
# init flask app
app = Flask(__name__, template_folder="web/resources")
socketio = SocketIO(
app,
cors_allowed_origins=[
# "https://ms-df99sl6t-1.webui.ap-shanghai.ti.tencentcs.com"
# args.ip,
],
)
# init connected users
connected_users = {}
def extract_token_ids_as_int(text):
pattern = re.compile(r"<\|audio_(\d+)\|>")
token_ids = pattern.findall(text)
return [int(id) for id in token_ids]
class TextAudioIteratorStreamer(TextIteratorStreamer):
def __init__(
self,
tokenizer: "AutoTokenizer",
skip_prompt: bool = False,
timeout: Optional[float] = None,
**decode_kwargs,
):
super().__init__(tokenizer, skip_prompt, timeout, **decode_kwargs)
# self.audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>")
self.audio_offset = tokenizer.convert_tokens_to_ids("<|begin_of_audio|>")
self.num_decode_tokens = 0
def put(self, value):
"""
Receives tokens, decodes them, and logger.infos them to stdout as soon as they form entire words.
"""
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
self.num_decode_tokens += len(value)
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist())
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
# After the symbol for a new line, we flush the cache.
if text.endswith("\n"):
printable_text = text[self.print_len :]
self.token_cache = []
self.print_len = 0
# If the last token is a CJK character, we logger.info the characters.
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])):
printable_text = text[self.print_len :]
self.print_len += len(printable_text)
elif self.token_cache[-1] >= self.audio_offset:
printable_text = text[self.print_len :]
self.print_len += len(printable_text)
# Otherwise, logger.infos until the last space char (simple heuristic to avoid logger.infoing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
printable_text = text[self.print_len : text.rfind(" ") + 1]
self.print_len += len(printable_text)
self.on_finalized_text(printable_text)
while self.text_queue.qsize() > 10:
time.sleep(0.01)
streamer = TextAudioIteratorStreamer(tokenizer, skip_prompt=True)
audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>")
if prompt_audio_path is not None:
if audio_tokenizer.apply_to_role("system", is_discrete=True):
# discrete codec
prompt_audio_tokens = audio_tokenizer.encode(prompt_audio_path)
prompt_audio_tokens = "".join(f"<|audio_{i}|>" for i in prompt_audio_tokens)
system_message = [
{
"role": "system",
"content": f"Your Voice: <|begin_of_audio|>{prompt_audio_tokens}<|end_of_audio|>\n",
},
]
else:
# contiguous codec
system_message = default_system_message
elif mode == "luke":
system_message = luke_system_message
else:
system_message = default_system_message
def run_infer_stream(audio_tensor, sid):
logger.info("=" * 100)
start_time = time.time()
logger.info(start_time)
if audio_tensor is not None:
messages = system_message + [
{
"role": "user",
"content": message + "\n<|audio|>",
},
]
else:
messages = system_message + [
{
"role": "user",
"content": message,
},
]
if audio_tensor is not None and audio_tokenizer.apply_to_role("user", is_discrete=True):
# discrete codec
audio_tokens = audio_tokenizer.encode(audio_tensor)
audio_tokens = "".join(f"<|audio_{i}|>" for i in audio_tokens)
messages[-1]["content"] = messages[-1]["content"].replace(
"<|audio|>", f"<|begin_of_audio|>{audio_tokens}<|end_of_audio|>"
)
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=add_generation_prompt,
# return_tensors="pt",
) # .to("cuda")
if audio_tensor is not None and audio_tokenizer.apply_to_role("user", is_contiguous=True):
# contiguous codec
print(f"{audio_tensor=}")
input_ids, audios, audio_indices = add_audio_input_contiguous(
input_ids, [audio_tensor], tokenizer, audio_tokenizer
)
else:
audios = None
audio_indices = None
# mtp_inference_mode = [1, 10, 4, 10]
# model.generation_config.mtp_inference_mode = mtp_inference_mode
input_ids = torch.tensor([input_ids], dtype=torch.long).to("cuda")
logger.info(f"input {tokenizer.decode(input_ids[0], skip_special_tokens=False)}", flush=True)
model.generation_config.do_sample = False
generation_kwargs = dict(
input_ids=input_ids,
audios=audios,
audio_indices=audio_indices,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
past_tts_speech_len = 0
past_audio_token_len = 0
option_steps = 1
num_audio_chunk = 0
for new_text in streamer:
# logger.info(f"{new_text=}")
generated_text += new_text
if "<|end_of_audio|>" == new_text:
audio_tokens = extract_token_ids_as_int(generated_text)
print(f"{generated_text=}")
if num_audio_chunk == 0:
pass
elif len(audio_tokens) - past_audio_token_len > 16:
pass
else:
continue
# from torch.nn.attention import SDPBackend, sdpa_kernel
# with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
tts_speech = audio_tokenizer.decode(
audio_tokens,
source_speech_16k=prompt_audio_path,
option_steps=option_steps,
)
option_steps = min(option_steps + 2, 10)
new_tts_speech = tts_speech[past_tts_speech_len:]
tts_np = new_tts_speech.squeeze().float().cpu().numpy()
max_val = np.max(np.abs(tts_np))
if max_val > 0:
tts_np = tts_np / max_val # 归一化到 [-1, 1]
output_data = (tts_np * 32767).astype(np.int16)
if sid is not None:
connected_users[sid][1].tts_data.put(output_data)
if num_audio_chunk == 0:
first_audio_time = (
time.time() - start_time
) # Capture the first audio generation time
dt = datetime.datetime.fromtimestamp(first_audio_time)
formatted_time = dt.strftime("%S.%f")[:-3] + " seconds"
# Emit to the frontend
if sid is not None:
socketio.emit("first_audio_time", {"time": formatted_time}, to=sid)
# emit('first_audio_time', {'time': formatted_time}, to=sid)
logger.info(f"First audio generation time: {formatted_time}")
past_tts_speech_len = len(tts_speech)
past_audio_token_len = len(audio_tokens)
if len(audio_tokens) > 512:
generated_text = ""
past_tts_speech_len = 0
past_audio_token_len = 0
num_audio_chunk += 1
def send_pcm(sid):
"""
Sends PCM audio data to the dialogue system for processing.
Parameters:
- sid (str): The session ID of the user.
"""
# global TTS_END_LOCK
chunk_szie = connected_users[sid][1].wakeup_and_vad.get_chunk_size()
logger.info(f"Sid: {sid} Start listening")
while True:
if connected_users[sid][1].stop_pcm:
logger.info(f"Sid: {sid} Stop pcm")
connected_users[sid][1].stop_generate = True
connected_users[sid][1].stop_tts = True
break
time.sleep(0.01)
e = connected_users[sid][1].pcm_fifo_queue.get(chunk_szie)
if e is None:
continue
if connected_users[sid][1].tts_end_lock:
continue
if len(e) == 4096:
pass
else:
logger.info("Sid: ", sid, " Received PCM data: ", len(e))
res = connected_users[sid][1].wakeup_and_vad.predict(e)
if res is not None:
# 说明有音频了
if "start" in res:
logger.info(f"Sid: {sid} Vad start")
elif "cache_dialog" in res:
logger.info(f"Sid: {sid} Vad end")
logger.info(time.time())
# import pdb;pdb.set_trace()
directory = "./chat_history"
if not os.path.exists(directory):
os.makedirs(directory)
audio_duration = len(res["cache_dialog"]) / target_sample_rate
# import pdb;pdb.set_trace()
if audio_duration < 1:
logger.info("The duration of the audio is less than 1s, skipping...")
continue
run_infer_stream((res["cache_dialog"].unsqueeze(0), 16000), sid)
def disconnect_user(sid):
if sid in connected_users:
logger.info(f"Disconnecting user {sid} due to time out")
socketio.emit("out_time", to=sid)
connected_users[sid][0].cancel()
connected_users[sid][1].interrupt()
connected_users[sid][1].stop_pcm = True
connected_users[sid][1].release()
time.sleep(3)
del connected_users[sid]
@app.route("/")
def index():
return render_template("index.html")
@socketio.on("connect")
def handle_connect():
if len(connected_users) >= MAX_USERS:
logger.info("Too many users connected, disconnecting new user")
emit("too_many_users")
return
sid = request.sid
connected_users[sid] = []
connected_users[sid].append(Timer(TIMEOUT, disconnect_user, [sid]))
connected_users[sid].append(GlobalParams())
connected_users[sid][0].start()
pcm_thread = threading.Thread(target=send_pcm, args=(sid,))
pcm_thread.start()
logger.info(f"User {sid} connected")
@socketio.on("disconnect")
def handle_disconnect():
sid = request.sid
if sid in connected_users:
connected_users[sid][0].cancel()
connected_users[sid][1].interrupt()
connected_users[sid][1].stop_pcm = True
connected_users[sid][1].release()
time.sleep(3)
del connected_users[sid]
logger.info(f"User {sid} disconnected")
@socketio.on("recording-started")
def handle_recording_started():
sid = request.sid
if sid in connected_users:
socketio.emit("stop_tts", to=sid)
connected_users[sid][0].cancel()
connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid])
connected_users[sid][0].start()
connected_users[sid][1].interrupt()
socketio.emit("stop_tts", to=sid)
connected_users[sid][1].reset()
else:
disconnect()
logger.info("Recording started")
@socketio.on("recording-stopped")
def handle_recording_stopped():
sid = request.sid
if sid in connected_users:
connected_users[sid][0].cancel()
connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid])
connected_users[sid][0].start()
connected_users[sid][1].interrupt()
socketio.emit("stop_tts", to=sid)
connected_users[sid][1].reset()
else:
disconnect()
logger.info("Recording stopped")
@socketio.on("tts_playing")
def handle_tts_playing():
sid = request.sid
if sid in connected_users:
connected_users[sid][1].tts_end_lock = True
@socketio.on("tts_stopped")
def handle_tts_stopped():
sid = request.sid
if sid in connected_users:
connected_users[sid][1].tts_end_lock = False
# # 鉴权
# @socketio.on("authenticate")
# def handle_authentication(data):
# password = data.get("password")
# # Check if the password matches
# if password == "aaa":
# emit("authenticated")
# else:
# emit("authentication_failed")
# disconnect()
@socketio.on("audio")
def handle_audio(data):
# global TTS_END_LOCK
sid = request.sid
if sid in connected_users:
if not connected_users[sid][1].tts_data.is_empty():
# import pdb;pdb.set_trace()
connected_users[sid][0].cancel()
connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid])
connected_users[sid][0].start()
output_data = connected_users[sid][1].tts_data.get()
# import pdb;pdb.set_trace()
if output_data is not None:
# logger.info(f"{output_data.shape=} {output_data[:20]=}")
# logger.info(max(output_data))
tensor = torch.from_numpy(output_data.astype("int16")).unsqueeze(0) # (1, N)
if not os.path.exists("output/"):
os.makedirs("output/")
torchaudio.save(
f"output/{time.time()}.wav",
tensor,
22050,
encoding="PCM_S",
bits_per_sample=16,
)
# TTS_END_LOCK = False
# logger.info(f"Sid: {sid} Send TTS data")
emit("audio", output_data.tobytes())
# logger.info(f"send_time {time.time()}")
if connected_users[sid][1].tts_over_time > 0:
socketio.emit("stop_tts", to=sid)
connected_users[sid][1].tts_over_time = 0
data = json.loads(data)
audio_data = np.frombuffer(bytes(data["audio"]), dtype=np.int16)
sample_rate = data["sample_rate"]
connected_users[sid][1].pcm_fifo_queue.put(audio_data.astype(np.float32) / 32768.0)
else:
disconnect()
if __name__ == "__main__":
logger.info("Start VITA-Audio sever")
cert_file = "web/resources/cert.pem"
key_file = "web/resources/key.pem"
if not os.path.exists(cert_file) or not os.path.exists(key_file):
generate_self_signed_cert(cert_file, key_file)
logger.info("=" * 100)
logger.info("Warmup...")
run_infer_stream("asset/介绍一下上海.wav", None)
logger.info("Warmup Done.")
logger.info("=" * 100)
socketio.run(app, host=args.ip, port=args.port, ssl_context=(cert_file, key_file))