import argparse import builtins import datetime import json import os import re import struct import sys import threading import time from copy import deepcopy from threading import Thread, Timer from typing import Optional import numpy as np import torch import yaml from huggingface_hub import snapshot_download from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from transformers.generation import GenerationConfig import torchaudio from flask import Flask, render_template, request from flask_socketio import SocketIO, disconnect, emit from loguru import logger from vita_audio.data.processor.audio_processor import add_audio_input_contiguous from vita_audio.tokenizer import get_audio_tokenizer from web.parms import GlobalParams from web.pem import generate_self_signed_cert def get_args(): parser = argparse.ArgumentParser(description="VITA-Audio") parser.add_argument("--ip", required=True, help="ip of server") parser.add_argument("--port", required=True, help="port of server") parser.add_argument("--max_users", type=int, default=2) parser.add_argument("--timeout", type=int, default=600) args = parser.parse_args() logger.info(args) return args target_sample_rate = 16000 # init parms args = get_args() # 先设定一个死地址 model_name_or_path = "VITA-MLLM/VITA-Audio-Plus-Boost" device_map = "auto" sys.path.append("third_party/GLM-4-Voice/") sys.path.append("third_party/GLM-4-Voice/cosyvoice/") sys.path.append("third_party/GLM-4-Voice/third_party/Matcha-TTS/") audio_tokenizer_path = snapshot_download(repo_id="THUDM/glm-4-voice-tokenizer") flow_path = snapshot_download(repo_id="THUDM/glm-4-voice-decoder") audio_tokenizer_rank = 0 audio_tokenizer_type = "glm4voice" audio_tokenizer_type = "sensevoice_glm4voice" prompt_audio_path = None torch_dtype = torch.bfloat16 audio_tokenizer = get_audio_tokenizer( audio_tokenizer_path, audio_tokenizer_type, flow_path=flow_path, rank=audio_tokenizer_rank, ) audio_tokenizer.load_model() chat_template = """ {%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{\\\"name\\\": , \\\"arguments\\\": }\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n """ add_generation_prompt = True default_system_message = [] luke_system_message = [ { "role": "system", "content": "Your Name: Luke\nYour Gender: male\n\nRespond in a text-audio interleaved manner.", }, ] mode = "luke" message = "" tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True, chat_template=chat_template, ) # logger.info(f"{tokenizer=}") logger.info(f"{tokenizer.get_chat_template()=}") model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, device_map=device_map, torch_dtype=torch_dtype, attn_implementation="flash_attention_2", ).eval() # logger.info("model", model) logger.info(f"{model.config.model_type=}") # logger.info(f"{model.hf_device_map=}") # TTS_END_LOCK = False model.generation_config = GenerationConfig.from_pretrained( model_name_or_path, trust_remote_code=True ) model.generation_config.max_new_tokens = 8192 model.generation_config.chat_format = "chatml" model.generation_config.max_window_size = 8192 model.generation_config.use_cache = True # model.generation_config.use_cache = False model.generation_config.do_sample = True model.generation_config.temperature = 1.0 model.generation_config.top_k = 50 model.generation_config.top_p = 1.0 model.generation_config.num_beams = 1 model.generation_config.pad_token_id = tokenizer.pad_token_id # max users to connect MAX_USERS = args.max_users # timeout to each user TIMEOUT = args.timeout # init flask app app = Flask(__name__, template_folder="web/resources") socketio = SocketIO( app, cors_allowed_origins=[ # "https://ms-df99sl6t-1.webui.ap-shanghai.ti.tencentcs.com" # args.ip, ], ) # init connected users connected_users = {} def extract_token_ids_as_int(text): pattern = re.compile(r"<\|audio_(\d+)\|>") token_ids = pattern.findall(text) return [int(id) for id in token_ids] class TextAudioIteratorStreamer(TextIteratorStreamer): def __init__( self, tokenizer: "AutoTokenizer", skip_prompt: bool = False, timeout: Optional[float] = None, **decode_kwargs, ): super().__init__(tokenizer, skip_prompt, timeout, **decode_kwargs) # self.audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>") self.audio_offset = tokenizer.convert_tokens_to_ids("<|begin_of_audio|>") self.num_decode_tokens = 0 def put(self, value): """ Receives tokens, decodes them, and logger.infos them to stdout as soon as they form entire words. """ if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return self.num_decode_tokens += len(value) # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith("\n"): printable_text = text[self.print_len :] self.token_cache = [] self.print_len = 0 # If the last token is a CJK character, we logger.info the characters. elif len(text) > 0 and self._is_chinese_char(ord(text[-1])): printable_text = text[self.print_len :] self.print_len += len(printable_text) elif self.token_cache[-1] >= self.audio_offset: printable_text = text[self.print_len :] self.print_len += len(printable_text) # Otherwise, logger.infos until the last space char (simple heuristic to avoid logger.infoing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: printable_text = text[self.print_len : text.rfind(" ") + 1] self.print_len += len(printable_text) self.on_finalized_text(printable_text) while self.text_queue.qsize() > 10: time.sleep(0.01) streamer = TextAudioIteratorStreamer(tokenizer, skip_prompt=True) audio_offset = tokenizer.convert_tokens_to_ids("<|audio_0|>") if prompt_audio_path is not None: if audio_tokenizer.apply_to_role("system", is_discrete=True): # discrete codec prompt_audio_tokens = audio_tokenizer.encode(prompt_audio_path) prompt_audio_tokens = "".join(f"<|audio_{i}|>" for i in prompt_audio_tokens) system_message = [ { "role": "system", "content": f"Your Voice: <|begin_of_audio|>{prompt_audio_tokens}<|end_of_audio|>\n", }, ] else: # contiguous codec system_message = default_system_message elif mode == "luke": system_message = luke_system_message else: system_message = default_system_message def run_infer_stream(audio_tensor, sid): logger.info("=" * 100) start_time = time.time() logger.info(start_time) if audio_tensor is not None: messages = system_message + [ { "role": "user", "content": message + "\n<|audio|>", }, ] else: messages = system_message + [ { "role": "user", "content": message, }, ] if audio_tensor is not None and audio_tokenizer.apply_to_role("user", is_discrete=True): # discrete codec audio_tokens = audio_tokenizer.encode(audio_tensor) audio_tokens = "".join(f"<|audio_{i}|>" for i in audio_tokens) messages[-1]["content"] = messages[-1]["content"].replace( "<|audio|>", f"<|begin_of_audio|>{audio_tokens}<|end_of_audio|>" ) input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=add_generation_prompt, # return_tensors="pt", ) # .to("cuda") if audio_tensor is not None and audio_tokenizer.apply_to_role("user", is_contiguous=True): # contiguous codec print(f"{audio_tensor=}") input_ids, audios, audio_indices = add_audio_input_contiguous( input_ids, [audio_tensor], tokenizer, audio_tokenizer ) else: audios = None audio_indices = None # mtp_inference_mode = [1, 10, 4, 10] # model.generation_config.mtp_inference_mode = mtp_inference_mode input_ids = torch.tensor([input_ids], dtype=torch.long).to("cuda") logger.info(f"input {tokenizer.decode(input_ids[0], skip_special_tokens=False)}", flush=True) model.generation_config.do_sample = False generation_kwargs = dict( input_ids=input_ids, audios=audios, audio_indices=audio_indices, streamer=streamer, ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() generated_text = "" past_tts_speech_len = 0 past_audio_token_len = 0 option_steps = 1 num_audio_chunk = 0 for new_text in streamer: # logger.info(f"{new_text=}") generated_text += new_text if "<|end_of_audio|>" == new_text: audio_tokens = extract_token_ids_as_int(generated_text) print(f"{generated_text=}") if num_audio_chunk == 0: pass elif len(audio_tokens) - past_audio_token_len > 16: pass else: continue # from torch.nn.attention import SDPBackend, sdpa_kernel # with sdpa_kernel(SDPBackend.FLASH_ATTENTION): tts_speech = audio_tokenizer.decode( audio_tokens, source_speech_16k=prompt_audio_path, option_steps=option_steps, ) option_steps = min(option_steps + 2, 10) new_tts_speech = tts_speech[past_tts_speech_len:] tts_np = new_tts_speech.squeeze().float().cpu().numpy() max_val = np.max(np.abs(tts_np)) if max_val > 0: tts_np = tts_np / max_val # 归一化到 [-1, 1] output_data = (tts_np * 32767).astype(np.int16) if sid is not None: connected_users[sid][1].tts_data.put(output_data) if num_audio_chunk == 0: first_audio_time = ( time.time() - start_time ) # Capture the first audio generation time dt = datetime.datetime.fromtimestamp(first_audio_time) formatted_time = dt.strftime("%S.%f")[:-3] + " seconds" # Emit to the frontend if sid is not None: socketio.emit("first_audio_time", {"time": formatted_time}, to=sid) # emit('first_audio_time', {'time': formatted_time}, to=sid) logger.info(f"First audio generation time: {formatted_time}") past_tts_speech_len = len(tts_speech) past_audio_token_len = len(audio_tokens) if len(audio_tokens) > 512: generated_text = "" past_tts_speech_len = 0 past_audio_token_len = 0 num_audio_chunk += 1 def send_pcm(sid): """ Sends PCM audio data to the dialogue system for processing. Parameters: - sid (str): The session ID of the user. """ # global TTS_END_LOCK chunk_szie = connected_users[sid][1].wakeup_and_vad.get_chunk_size() logger.info(f"Sid: {sid} Start listening") while True: if connected_users[sid][1].stop_pcm: logger.info(f"Sid: {sid} Stop pcm") connected_users[sid][1].stop_generate = True connected_users[sid][1].stop_tts = True break time.sleep(0.01) e = connected_users[sid][1].pcm_fifo_queue.get(chunk_szie) if e is None: continue if connected_users[sid][1].tts_end_lock: continue if len(e) == 4096: pass else: logger.info("Sid: ", sid, " Received PCM data: ", len(e)) res = connected_users[sid][1].wakeup_and_vad.predict(e) if res is not None: # 说明有音频了 if "start" in res: logger.info(f"Sid: {sid} Vad start") elif "cache_dialog" in res: logger.info(f"Sid: {sid} Vad end") logger.info(time.time()) # import pdb;pdb.set_trace() directory = "./chat_history" if not os.path.exists(directory): os.makedirs(directory) audio_duration = len(res["cache_dialog"]) / target_sample_rate # import pdb;pdb.set_trace() if audio_duration < 1: logger.info("The duration of the audio is less than 1s, skipping...") continue run_infer_stream((res["cache_dialog"].unsqueeze(0), 16000), sid) def disconnect_user(sid): if sid in connected_users: logger.info(f"Disconnecting user {sid} due to time out") socketio.emit("out_time", to=sid) connected_users[sid][0].cancel() connected_users[sid][1].interrupt() connected_users[sid][1].stop_pcm = True connected_users[sid][1].release() time.sleep(3) del connected_users[sid] @app.route("/") def index(): return render_template("index.html") @socketio.on("connect") def handle_connect(): if len(connected_users) >= MAX_USERS: logger.info("Too many users connected, disconnecting new user") emit("too_many_users") return sid = request.sid connected_users[sid] = [] connected_users[sid].append(Timer(TIMEOUT, disconnect_user, [sid])) connected_users[sid].append(GlobalParams()) connected_users[sid][0].start() pcm_thread = threading.Thread(target=send_pcm, args=(sid,)) pcm_thread.start() logger.info(f"User {sid} connected") @socketio.on("disconnect") def handle_disconnect(): sid = request.sid if sid in connected_users: connected_users[sid][0].cancel() connected_users[sid][1].interrupt() connected_users[sid][1].stop_pcm = True connected_users[sid][1].release() time.sleep(3) del connected_users[sid] logger.info(f"User {sid} disconnected") @socketio.on("recording-started") def handle_recording_started(): sid = request.sid if sid in connected_users: socketio.emit("stop_tts", to=sid) connected_users[sid][0].cancel() connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid]) connected_users[sid][0].start() connected_users[sid][1].interrupt() socketio.emit("stop_tts", to=sid) connected_users[sid][1].reset() else: disconnect() logger.info("Recording started") @socketio.on("recording-stopped") def handle_recording_stopped(): sid = request.sid if sid in connected_users: connected_users[sid][0].cancel() connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid]) connected_users[sid][0].start() connected_users[sid][1].interrupt() socketio.emit("stop_tts", to=sid) connected_users[sid][1].reset() else: disconnect() logger.info("Recording stopped") @socketio.on("tts_playing") def handle_tts_playing(): sid = request.sid if sid in connected_users: connected_users[sid][1].tts_end_lock = True @socketio.on("tts_stopped") def handle_tts_stopped(): sid = request.sid if sid in connected_users: connected_users[sid][1].tts_end_lock = False # # 鉴权 # @socketio.on("authenticate") # def handle_authentication(data): # password = data.get("password") # # Check if the password matches # if password == "aaa": # emit("authenticated") # else: # emit("authentication_failed") # disconnect() @socketio.on("audio") def handle_audio(data): # global TTS_END_LOCK sid = request.sid if sid in connected_users: if not connected_users[sid][1].tts_data.is_empty(): # import pdb;pdb.set_trace() connected_users[sid][0].cancel() connected_users[sid][0] = Timer(TIMEOUT, disconnect_user, [sid]) connected_users[sid][0].start() output_data = connected_users[sid][1].tts_data.get() # import pdb;pdb.set_trace() if output_data is not None: # logger.info(f"{output_data.shape=} {output_data[:20]=}") # logger.info(max(output_data)) tensor = torch.from_numpy(output_data.astype("int16")).unsqueeze(0) # (1, N) if not os.path.exists("output/"): os.makedirs("output/") torchaudio.save( f"output/{time.time()}.wav", tensor, 22050, encoding="PCM_S", bits_per_sample=16, ) # TTS_END_LOCK = False # logger.info(f"Sid: {sid} Send TTS data") emit("audio", output_data.tobytes()) # logger.info(f"send_time {time.time()}") if connected_users[sid][1].tts_over_time > 0: socketio.emit("stop_tts", to=sid) connected_users[sid][1].tts_over_time = 0 data = json.loads(data) audio_data = np.frombuffer(bytes(data["audio"]), dtype=np.int16) sample_rate = data["sample_rate"] connected_users[sid][1].pcm_fifo_queue.put(audio_data.astype(np.float32) / 32768.0) else: disconnect() if __name__ == "__main__": logger.info("Start VITA-Audio sever") cert_file = "web/resources/cert.pem" key_file = "web/resources/key.pem" if not os.path.exists(cert_file) or not os.path.exists(key_file): generate_self_signed_cert(cert_file, key_file) logger.info("=" * 100) logger.info("Warmup...") run_infer_stream("asset/介绍一下上海.wav", None) logger.info("Warmup Done.") logger.info("=" * 100) socketio.run(app, host=args.ip, port=args.port, ssl_context=(cert_file, key_file))