from transformers import AutoTokenizer from vllm import LLM, SamplingParams from multiprocessing import freeze_support if __name__ == '__main__': freeze_support() # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Pass the default decoding hyperparameters of Qwen3-8B. # max_tokens is for the maximum length for generation. sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512) # Input the model name or path. Can be GPTQ or AWQ models. llm = LLM(model="Qwen/Qwen3-8B" , tensor_parallel_size=4) # Prepare your prompts ''' prompt = "Give me a short introduction to large language models." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] ''' prompt = "How many r's are in the word \"strawberry\"" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # generate outputs outputs = llm.generate([text], sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Generated text: {generated_text!r}")