# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy from dataclasses import dataclass, field import json import logging import pathlib from typing import Dict, Optional, Sequence, List import torch import deepspeed import glob import transformers import tokenizers import random import re from magma.image_processing_magma import MagmaImageProcessor from magma.processing_magma import MagmaProcessor from magma.modeling_magma import MagmaForCausalLM from magma.configuration_magma import MagmaConfig from transformers import ( AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig, Trainer, TrainingArguments, ) from transformers import AutoTokenizer, AutoConfig from transformers.trainer import get_model_param_count from trainer import MagmaTrainer from data import * local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) from packaging import version @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="microsoft/Magma-8B") version: Optional[str] = field(default="magma_instruct") freeze_backbone: bool = field(default=False) tune_mm_mlp_adapter: bool = field(default=False) vision_tower: Optional[str] = field(default=None) vision_tower_ckpt: Optional[str] = field(default=None) img_anyres_strategy: Optional[str] = field(default='crop') proj_vis_to_txt_tokens: bool = field(default=False) img_size: Optional[int] = field(default=640) # default to the last layer vision_backbone: Optional[str] = field(default="convnextlarge") tune_vision_tokenizer: Optional[str] = field(default='none') mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer pretrain_mm_mlp_adapter: Optional[str] = field(default=None) mm_projector_type: Optional[str] = field(default='linear') mm_use_trace_start_end: bool = field(default=False) mm_use_trace_speed: bool = field(default=False) mm_use_image_start_end: bool = field(default=False) mm_use_image_history: bool = field(default=False) mm_use_som_tom: bool = field(default=True) mm_use_som_tom_orig_img: bool = field(default=False) spatial_quant_size: Optional[int] = field(default=256) remove_static_trace_pts: bool = field(default=False) mm_use_im_patch_token: bool = field(default=True) mm_vision_select_feature: Optional[str] = field(default="patch") flash_attn_2_enabled: bool = False task: Optional[str] = field(default="agent") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False is_multimodal: bool = False data_format: str = "llava" image_folder: Optional[str] = field(default=None) image_aspect_ratio: str = 'square' max_num_crops: int = 25 add_im_loss: bool = False training_size: str = 'default' show_trace: bool = False @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) freeze_mm_mlp_adapter: bool = field(default=False) mpt_attn_impl: Optional[str] = field(default="triton") model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=16, metadata={"help": "How many bits to use."} ) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" min_lr_rate: Optional[float] = None mm_projector_lr: Optional[float] = None vision_tokenizer_lr: Optional[float] = None group_by_modality_length: bool = field(default=False) local_run: bool = False max_grad_norm: float = 1.0 def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def find_all_linear_names(model): cls = torch.nn.Linear lora_module_names = set() multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] for name, module in model.named_modules(): if any(mm_keyword in name for mm_keyword in multimodal_keywords): continue if isinstance(module, cls): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" if getattr(trainer.args, "tune_mm_mlp_adapter", False): # Only save Adapter keys_to_match = ['mm_projector'] if getattr(trainer.args, "use_im_start_end", False): keys_to_match.extend(['embed_tokens', 'embed_in']) if getattr(trainer.args, "tune_vision_tokenizer", 'none') == "posembed": keys_to_match.extend(['posembed']) elif getattr(trainer.args, "tune_vision_tokenizer", 'none') == "decoder": keys_to_match.extend(['sem_seg_head.predictor']) elif getattr(trainer.args, "tune_vision_tokenizer", 'none') == "all": keys_to_match.extend(['vision_tower']) weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) trainer.model.config.save_pretrained(output_dir) current_folder = output_dir.split('/')[-1] parent_folder = os.path.dirname(output_dir) if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: if current_folder.startswith('checkpoint-'): mm_projector_folder = os.path.join(parent_folder, "mm_projector") os.makedirs(mm_projector_folder, exist_ok=True) torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) else: torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) return if trainer.deepspeed: torch.cuda.synchronize() trainer.save_model(output_dir) return state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = { key: value.cpu() for key, value in state_dict.items() } del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ if isinstance(special_tokens_dict, list): num_new_tokens = tokenizer.add_tokens(special_tokens_dict, special_tokens=True) else: num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) new_vocab_size = len(tokenizer) # Update base model and current model config if hasattr(model.config, "text_config"): model.config.text_config.vocab_size = new_vocab_size else: model.config.vocab_size = new_vocab_size model.vocab_size = new_vocab_size if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [ tokenized.input_ids[0] for tokenized in tokenized_list ] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def make_supervised_data_module(processor: MagmaProcessor, data_args, training_args) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = build_joint_dataset( processor=processor, data_path=data_args.data_path, data_args=data_args ) if training_args.evaluation_strategy != 'no': val_dataset = build_joint_dataset( processor=processor, data_path=data_args.data_path, data_args=data_args, is_eval=True ) else: val_dataset = None data_collator = DataCollatorForSupervisedDataset(processor=processor) return dict(train_dataset=train_dataset, eval_dataset=val_dataset, data_collator=data_collator) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() local_rank = training_args.local_rank compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) if training_args.min_lr_rate is not None: training_args.lr_scheduler_kwargs = {'min_lr_rate': training_args.min_lr_rate} bnb_model_from_pretrained_args = {} if training_args.bits in [4, 8]: from transformers import BitsAndBytesConfig bnb_model_from_pretrained_args.update(dict( device_map={"": training_args.device}, load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, quantization_config=BitsAndBytesConfig( load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, llm_int8_skip_modules=["mm_projector"], llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=training_args.double_quant, bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} ) )) if 'magma' in model_args.model_name_or_path.lower(): model = MagmaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2" if model_args.flash_attn_2_enabled else None, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), **bnb_model_from_pretrained_args ) magma_processor = MagmaProcessor.from_pretrained( model_args.model_name_or_path, trust_remote_code=True ) model.config.tokenizer_vocab_size = magma_processor.tokenizer.vocab_size else: vision_config = { "img_size": model_args.img_size, "anyres_strategy": model_args.img_anyres_strategy, "vision_backbone": model_args.vision_backbone, "vision_tower": model_args.vision_tower, "vision_tower_ckpt": model_args.vision_tower_ckpt, "mm_vision_select_layer": model_args.mm_vision_select_layer, "mm_vision_select_feature": model_args.mm_vision_select_feature, "pretrain_mm_mlp_adapter": model_args.pretrain_mm_mlp_adapter, "mm_projector_type": model_args.mm_projector_type, "proj_vis_to_txt_tokens": model_args.proj_vis_to_txt_tokens, "mm_use_im_patch_token": model_args.mm_use_im_patch_token, "vision_feature_layer": "clip_vis_dense", "use_cache": False, } text_config = AutoConfig.from_pretrained( model_args.model_name_or_path, trust_remote_code=True ) magma_config = MagmaConfig( vision_config=vision_config, text_config=text_config, ) model = MagmaForCausalLM(magma_config) # reload language model model.language_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2" if model_args.flash_attn_2_enabled else None, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), trust_remote_code=True, **bnb_model_from_pretrained_args ) # reload vision encoder from open_clip.pretrained import download_pretrained_from_hf if vision_config['vision_tower'] == 'convnext': model_id = 'laion/CLIP-convnext_large-laion2B-s34B-b82K-augreg' else: model_id = 'laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg' checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=None) model.load_special_module_from_ckpt(checkpoint_path, torch_dtype=(torch.bfloat16 if training_args.bf16 else None)) # load 'magma/default_preprocessor_config.json' if it exists if os.path.exists('magma/default_preprocessor_config.json'): with open('magma/default_preprocessor_config.json') as f: preprocessor_config = json.load(f) else: preprocessor_config = {} image_processor = MagmaImageProcessor(**preprocessor_config) tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) magma_processor = MagmaProcessor(image_processor=image_processor, tokenizer=tokenizer) smart_tokenizer_and_embedding_resize( special_tokens_dict=[""], tokenizer=magma_processor.tokenizer, model=model, ) # if tokenizer does not have pad_token, add it if magma_processor.tokenizer.pad_token_id is None: smart_tokenizer_and_embedding_resize( special_tokens_dict={'pad_token': ''}, tokenizer=magma_processor.tokenizer, model=model, ) model.config.image_token_index = tokenizer.convert_tokens_to_ids("") model.config.tokenizer_vocab_size = magma_processor.tokenizer.vocab_size model = model.to(training_args.device) magma_processor.tokenizer.model_max_length = training_args.model_max_length magma_processor.image_processor.base_img_size = model_args.img_size magma_processor.image_processor.anyres_strategy = model_args.img_anyres_strategy if model_args.mm_use_trace_start_end: smart_tokenizer_and_embedding_resize( special_tokens_dict=["", ""], tokenizer=magma_processor.tokenizer, model=model, ) if model_args.mm_use_image_start_end: smart_tokenizer_and_embedding_resize( special_tokens_dict=["", ""], tokenizer=magma_processor.tokenizer, model=model, ) # we add an token as the place holder for the action smart_tokenizer_and_embedding_resize( special_tokens_dict=[""], tokenizer=magma_processor.tokenizer, model=model, ) if model_args.freeze_backbone: model.requires_grad_(False) if training_args.bits in [4, 8]: from peft import prepare_model_for_kbit_training model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) if training_args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) if training_args.lora_enable: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=training_args.lora_r, lora_alpha=training_args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=training_args.lora_dropout, bias=training_args.lora_bias, task_type="CAUSAL_LM", ) if training_args.bits == 16: if training_args.bf16: model.to(torch.bfloat16) if training_args.fp16: model.to(torch.float16) rank0_print("Adding LoRA adapters...") model = get_peft_model(model, lora_config) if model_args.tune_mm_mlp_adapter: model.requires_grad_(False) for p in model.multi_modal_projector.parameters(): p.requires_grad = True if training_args.freeze_mm_mlp_adapter: for p in model.multi_modal_projector.parameters(): p.requires_grad = False if model_args.tune_vision_tokenizer == "none": for name, p in model.vision_tower.named_parameters(): p.requires_grad = False total_params = get_model_param_count(model, trainable_only=True) rank0_print(f"Total trainable parameters: {total_params}") if training_args.bits in [4, 8]: model.multi_modal_projector.to(dtype=compute_dtype, device=training_args.device) from peft.tuners.lora import LoraLayer for name, module in model.named_modules(): if isinstance(module, LoraLayer): if training_args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if training_args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) data_args.mm_use_trace_start_end = model_args.mm_use_trace_start_end data_args.mm_use_trace_speed = model_args.mm_use_trace_speed data_args.mm_use_image_start_end = model_args.mm_use_image_start_end data_args.mm_use_image_history = model_args.mm_use_image_history data_args.mm_use_som_tom = model_args.mm_use_som_tom data_args.mm_use_som_tom_orig_img = model_args.mm_use_som_tom_orig_img data_args.remove_static_trace_pts = model_args.remove_static_trace_pts data_args.spatial_quant_size = model_args.spatial_quant_size data_args.version = model_args.version data_args.local_run = training_args.local_run data_args.task = model_args.task model.config.mm_use_trace_start_end = model_args.mm_use_trace_start_end model.config.mm_use_trace_speed = model_args.mm_use_trace_speed model.config.mm_use_image_start_end = model_args.mm_use_image_start_end model.config.mm_use_image_history = model_args.mm_use_image_history model.config.remove_static_trace_pts = model_args.remove_static_trace_pts model.config.mm_use_som_tom = model_args.mm_use_som_tom model.config.mm_use_som_tom_orig_img = model_args.mm_use_som_tom_orig_img model.config.spatial_quant_size = model_args.spatial_quant_size model.config.img_size = model_args.img_size model.config.use_cache = False model.config.vision_config['img_anyres_strategy'] = model_args.img_anyres_strategy data_module = make_supervised_data_module(processor=magma_processor, data_args=data_args, training_args=training_args) trainer = MagmaTrainer(model=model, tokenizer=magma_processor.tokenizer, args=training_args, **data_module) # print training_args rank0_print(training_args) rank0_print(model_args) if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): print("Resuming from checkpoint...") trainer.train(resume_from_checkpoint=True) else: trainer.train() trainer.save_state() model.config.use_cache = True if training_args.lora_enable: state_dict = get_peft_state_maybe_zero_3( model.named_parameters(), training_args.lora_bias ) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( model.named_parameters() ) if training_args.local_rank == 0 or training_args.local_rank == -1: model.config.save_pretrained(training_args.output_dir) model.save_pretrained(training_args.output_dir, state_dict=state_dict) torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) else: safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) # save image_processor config for rank 0 if training_args.local_rank == 0 or training_args.local_rank == -1: magma_processor.image_processor.save_pretrained(training_args.output_dir) if __name__ == "__main__": train()