""" datasets.py Lightweight PyTorch Dataset Definition for wrapping RLDS TFDS Pipeline; just defines transform from RLDS default format to OpenVLA, IterableDataset shim. """ from dataclasses import dataclass from pathlib import Path from typing import Any, Dict, Tuple, Type import collections import os import numpy as np import cv2 import torch from PIL import Image import torchvision from torchvision.transforms import transforms from torch.utils.data import Dataset, IterableDataset from transformers import PreTrainedTokenizerBase from data.utils.som_tom import som_prompting, tom_prompting # from prismatic.models.backbones.llm.prompting import PromptBuilder # from prismatic.models.backbones.vision import ImageTransform from ..action_tokenizer import ActionTokenizer from .rlds import make_interleaved_dataset, make_single_dataset from .rlds.oxe import OXE_NAMED_MIXTURES, get_oxe_dataset_kwargs_and_weights from .rlds.utils.data_utils import NormalizationType # HuggingFace Default / LLaMa-2 IGNORE_INDEX (for labels) IGNORE_INDEX = -100 from typing import Callable, Dict, Sequence, Tuple def tree_map(fn: Callable, tree: dict) -> dict: """Maps a function over a nested dictionary.""" return {k: tree_map(fn, v) if isinstance(v, dict) else fn(v) for k, v in tree.items()} def tree_map_with_key(fn: Callable, tree: dict, keys: Sequence = ()) -> dict: """Maps a function over a nested dictionary.""" return { k: tree_map_with_key(fn, v, (*keys, k)) if isinstance(v, dict) else fn((*keys, k), v) for k, v in tree.items() } @dataclass class RLDSBatchTransform: action_tokenizer: ActionTokenizer base_tokenizer: PreTrainedTokenizerBase image_transform: None # ImageTransform prompt_builder_fn: None # Type[PromptBuilder] visual_tracker: None dataset_settings: None data_root_dir: str = "/mnt/vlpdatasets" predict_stop_token: bool = True trace_folder: str = "open-x-traces-v2" image_folder: str = "open-x-images-v2" local_run: bool = False def __call__(self, rlds_batch: Dict[str, Any]) -> Dict[str, Any]: """Converts a RLDS batch to the format expected by the OpenVLA collator/models.""" dataset_name, action = rlds_batch["dataset_name"], rlds_batch["action"][0] img = Image.fromarray(rlds_batch["observation"]["image_primary"][0]) imgs_future = [Image.fromarray(img) for img in rlds_batch["observation_future"]["image_primary"]] lang = rlds_batch["task"]["language_instruction"].decode().lower() traj_index = rlds_batch['_traj_index'] frame_index = rlds_batch['_frame_index'] action_token_ids = self.action_tokenizer.encode_actions_to_token_ids(action) # Construct Chat-based Prompt =>> Input is default query + language instruction, output are the action tokens convs = [ {"role": "system", "content": "You are agent that can see, talk and act."}, {"role": "user", "content": f"\nWhat action should the robot take to {lang}?"}, {"role": "assistant", "content": ""}, ] prompt = self.base_tokenizer.apply_chat_template(convs, tokenize=False, add_generation_prompt=False) # Tokenize (w/ `base_tokenizer`) input_ids = self.base_tokenizer(prompt, add_special_tokens=True).input_ids action_token_len = len(action_token_ids) action_placeholder_token_id = self.base_tokenizer.convert_tokens_to_ids("") # # replace the action_placeholder_token_id with action_token_ids in input_ids input_ids = list(input_ids) input_ids_filled = [] for i, token_id in enumerate(input_ids): if token_id == action_placeholder_token_id: input_ids_filled.extend(action_token_ids.tolist()) else: input_ids_filled.append(token_id) # Tensorize =>> Run Image Transform to get `pixel_values` =>> Return # =>> IMPORTANT :: IF WE'RE USING HF LLM.forward(..., labels=labels), SHIFTING HAPPENS _INSIDE_ MODEL! input_ids, labels = torch.tensor(input_ids_filled), torch.tensor(input_ids_filled) pixel_values = transforms.Compose([transforms.ToTensor()])(img) image_pt = self.image_transform(img, return_tensors='pt') images = collections.defaultdict(list) for key, val in image_pt.items(): images[key].append(val) pixel_values_future = torch.stack([transforms.Compose([transforms.ToTensor()])(item) for item in imgs_future], dim=0) # extract visual traces # trace_folder = self.trace_folder # if not os.path.exists(trace_folder): # trace_folder = "./open-x-traces-v2" # trace_file = f"{dataset_name}/{traj_index}/{frame_index}.pth" # trace_path = os.path.join(trace_folder, trace_file) # if not os.path.exists(trace_path): # pixel_values_seq = torch.cat([pixel_values.unsqueeze(0), pixel_values_future], dim=0).unsqueeze(0) # out = self.visual_tracker.extract_visual_trace(pixel_values_seq*255) # # self.visual_tracker.visualize(*out) # # save the visual trace to disk # trace_info = { # 'dataset_name': dataset_name, # 'traj_index': traj_index, # 'frame_index': frame_index, # 'lang': lang, # 'action': action, # 'trace_info': out[1:] # } # os.makedirs(os.path.dirname(trace_path), exist_ok=True) # torch.save(trace_info, trace_path) # save image # image_folder = self.image_folder # if not os.path.exists(image_folder): # image_folder = "./open-x-images-v2" # image_file = f"{dataset_name}/{traj_index}/{frame_index}.jpg" # image_path = os.path.join(image_folder, image_file) # if not os.path.exists(image_path): # os.makedirs(os.path.dirname(image_path), exist_ok=True) # img.save(image_path) # [CRITICAL] We do not want to take the loss for anything but the predicted action tokens! # NOTE: we add 2 to the length of the action to account for the \n\n and <|eot_id|> tokens! labels[: -(action_token_len + 2)] = IGNORE_INDEX if not self.predict_stop_token: labels[-1] = IGNORE_INDEX return dict(pixel_values=images['pixel_values'], image_sizes=images['image_sizes'], pixel_values_future=pixel_values_future, input_ids=input_ids, labels=labels, dataset_name=dataset_name) # return dict(pixel_values=pixel_values, pixel_values_future=pixel_values_future, action=action, conversation=conversation, dataset_name=dataset_name) class RLDSDataset(IterableDataset): def __init__( self, data_root_dir: Path, data_mix: str, batch_transform: RLDSBatchTransform, resize_resolution: Tuple[int, int], shuffle_buffer_size: int = 256_000, train: bool = True, image_aug: bool = False, future_action_window_size: int = 0, ) -> None: """Lightweight wrapper around RLDS TFDS Pipeline for use with PyTorch/OpenVLA Data Loaders.""" self.data_root_dir, self.data_mix, self.batch_transform = data_root_dir, data_mix, batch_transform # Configure RLDS Dataset(s) if self.data_mix in OXE_NAMED_MIXTURES: mixture_spec = OXE_NAMED_MIXTURES[self.data_mix] else: # Assume that passed "mixture" name is actually a single dataset -- create single-dataset "mix" mixture_spec = [(self.data_mix, 1.0)] # fmt: off per_dataset_kwargs, weights = get_oxe_dataset_kwargs_and_weights( self.data_root_dir, mixture_spec, load_camera_views=("primary",), load_depth=False, load_proprio=False, load_language=True, action_proprio_normalization_type=NormalizationType.BOUNDS_Q99, ) rlds_config = dict( traj_transform_kwargs=dict( window_size=1, # If we wanted to feed / predict more than one step future_action_window_size=future_action_window_size, # For action chunking skip_unlabeled=True, # Skip trajectories without language labels goal_relabeling_strategy="uniform", # Goals are currently unused ), frame_transform_kwargs=dict( resize_size=resize_resolution, num_parallel_calls=16, # For CPU-intensive ops (decoding, resizing, etc.) ), dataset_kwargs_list=per_dataset_kwargs, shuffle_buffer_size=shuffle_buffer_size, sample_weights=weights, balance_weights=True, traj_transform_threads=len(mixture_spec), traj_read_threads=len(mixture_spec), train=train, ) # If applicable, enable image augmentations if image_aug: rlds_config["frame_transform_kwargs"].update({"image_augment_kwargs" : dict( random_resized_crop=dict(scale=[0.9, 0.9], ratio=[1.0, 1.0]), random_brightness=[0.2], random_contrast=[0.8, 1.2], random_saturation=[0.8, 1.2], random_hue=[0.05], augment_order=[ "random_resized_crop", "random_brightness", "random_contrast", "random_saturation", "random_hue", ], )}), # fmt: on # Initialize RLDS Dataset self.dataset, self.dataset_length, self.dataset_statistics = self.make_dataset(rlds_config) def make_dataset(self, rlds_config): return make_interleaved_dataset(**rlds_config) def __iter__(self) -> Dict[str, Any]: for rlds_batch in self.dataset.as_numpy_iterator(): yield self.batch_transform(rlds_batch) def __len__(self) -> int: return self.dataset_length # === Explicitly Unused === def __getitem__(self, idx: int) -> None: raise NotImplementedError("IterableDataset does not implement map-style __getitem__; see __iter__ instead!") class EpisodicRLDSDataset(RLDSDataset): """Returns full episodes as list of steps instead of individual transitions (useful for visualizations).""" def make_dataset(self, rlds_config): per_dataset_kwargs = rlds_config["dataset_kwargs_list"] assert len(per_dataset_kwargs) == 1, "Only support single-dataset `mixes` for episodic datasets." return make_single_dataset( per_dataset_kwargs[0], train=rlds_config["train"], traj_transform_kwargs=rlds_config["traj_transform_kwargs"], frame_transform_kwargs=rlds_config["frame_transform_kwargs"], ) def __iter__(self) -> Dict[str, Any]: for rlds_batch in self.dataset.as_numpy_iterator(): out = [ self.batch_transform(tree_map(lambda x: x[i], rlds_batch)) # noqa: B023 for i in range(rlds_batch["action"].shape[0]) ] yield out class DummyDataset(Dataset): def __init__( self, action_tokenizer: ActionTokenizer, base_tokenizer: PreTrainedTokenizerBase, image_transform: None, # ImageTransform, prompt_builder_fn: None # Type[PromptBuilder], ) -> None: self.action_tokenizer = action_tokenizer self.base_tokenizer = base_tokenizer self.image_transform = image_transform self.prompt_builder_fn = prompt_builder_fn # Note =>> We expect the dataset to store statistics for action de-normalization. Specifically, we store the # per-dimension 1st and 99th action quantile. The values below correspond to "no normalization" for simplicity. self.dataset_statistics = { "dummy_dataset": { "action": {"q01": np.zeros((7,), dtype=np.float32), "q99": np.ones((7,), dtype=np.float32)} } } def __len__(self): # TODO =>> Replace with number of elements in your dataset! return 10000 def __getitem__(self, idx): # TODO =>> Load image, action and instruction from disk -- we use dummy values image = Image.fromarray(np.asarray(np.random.rand(224, 224, 3) * 255.0, dtype=np.uint8)) action = np.asarray(np.random.rand(7), dtype=np.float32) instruction = "do something spectacular" # Add instruction to VLA prompt prompt_builder = self.prompt_builder_fn("openvla") conversation = [ {"from": "human", "value": f"What action should the robot take to {instruction}?"}, {"from": "gpt", "value": self.action_tokenizer(action)}, ] for turn in conversation: prompt_builder.add_turn(turn["from"], turn["value"]) # Tokenize (w/ `base_tokenizer`) input_ids = self.base_tokenizer(prompt_builder.get_prompt(), add_special_tokens=True).input_ids labels = list(input_ids) # Tensorize =>> Run Image Transform to get `pixel_values` =>> Return # =>> IMPORTANT :: IF WE'RE USING HF .forward(..., labels=labels), SHIFTING HAPPENS _INSIDE_ MODEL! input_ids, labels = torch.tensor(input_ids), torch.tensor(labels) pixel_values = self.image_transform(image) # [CRITICAL] We do not want to take the loss for anything but the predicted action tokens! labels[: -(len(action) + 1)] = IGNORE_INDEX return dict(pixel_values=pixel_values, input_ids=input_ids, labels=labels)