Commit 0112b0f0 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
Pipeline #2394 canceled with stages
# https://wandb.ai
wandb:
_target_: lightning.pytorch.loggers.wandb.WandbLogger
# name: "" # name of the run (normally generated by wandb)
save_dir: "${paths.output_dir}"
offline: False
id: null # pass correct id to resume experiment!
anonymous: null # enable anonymous logging
project: "lightning-hydra-template"
log_model: False # upload lightning ckpts
prefix: "" # a string to put at the beginning of metric keys
# entity: "" # set to name of your wandb team
group: ""
tags: []
job_type: ""
name: CFM
solver: euler
sigma_min: 1e-4
channels: [256, 256]
dropout: 0.05
attention_head_dim: 64
n_blocks: 1
num_mid_blocks: 2
num_heads: 2
act_fn: snakebeta
encoder_type: RoPE Encoder
encoder_params:
n_feats: ${model.n_feats}
n_channels: 192
filter_channels: 768
filter_channels_dp: 256
n_heads: 2
n_layers: 6
kernel_size: 3
p_dropout: 0.1
spk_emb_dim: 64
n_spks: 1
prenet: true
duration_predictor_params:
filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
kernel_size: 3
p_dropout: ${model.encoder.encoder_params.p_dropout}
defaults:
- _self_
- encoder: default.yaml
- decoder: default.yaml
- cfm: default.yaml
- optimizer: adam.yaml
_target_: matcha.models.matcha_tts.MatchaTTS
n_vocab: 178
n_spks: ${data.n_spks}
spk_emb_dim: 64
n_feats: 80
data_statistics: ${data.data_statistics}
out_size: null # Must be divisible by 4
prior_loss: true
use_precomputed_durations: ${data.load_durations}
_target_: torch.optim.Adam
_partial_: true
lr: 1e-4
weight_decay: 0.0
# path to root directory
# this requires PROJECT_ROOT environment variable to exist
# you can replace it with "." if you want the root to be the current working directory
root_dir: ${oc.env:PROJECT_ROOT}
# path to data directory
data_dir: ${paths.root_dir}/data/
# path to logging directory
log_dir: ${paths.root_dir}/logs/
# path to output directory, created dynamically by hydra
# path generation pattern is specified in `configs/hydra/default.yaml`
# use it to store all files generated during the run, like ckpts and metrics
output_dir: ${hydra:runtime.output_dir}
# path to working directory
work_dir: ${hydra:runtime.cwd}
# @package _global_
# specify here default configuration
# order of defaults determines the order in which configs override each other
defaults:
- _self_
- data: ljspeech
- model: matcha
- callbacks: default
- logger: tensorboard # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
- trainer: default
- paths: default
- extras: default
- hydra: default
# experiment configs allow for version control of specific hyperparameters
# e.g. best hyperparameters for given model and datamodule
- experiment: null
# config for hyperparameter optimization
- hparams_search: null
# optional local config for machine/user specific settings
# it's optional since it doesn't need to exist and is excluded from version control
- optional local: default
# debugging config (enable through command line, e.g. `python train.py debug=default)
- debug: null
# task name, determines output directory path
task_name: "train"
run_name: ???
# tags to help you identify your experiments
# you can overwrite this in experiment configs
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
tags: ["dev"]
# set False to skip model training
train: True
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on the metric specified in checkpoint callback
test: True
# simply provide checkpoint path to resume training
ckpt_path: null
# seed for random number generators in pytorch, numpy and python.random
seed: 1234
defaults:
- default
accelerator: cpu
devices: 1
defaults:
- default
strategy: ddp
accelerator: gpu
devices: [0,1]
num_nodes: 1
sync_batchnorm: True
defaults:
- default
# simulate DDP on CPU, useful for debugging
accelerator: cpu
devices: 2
strategy: ddp_spawn
_target_: lightning.pytorch.trainer.Trainer
default_root_dir: ${paths.output_dir}
max_epochs: -1
accelerator: gpu
devices: [0]
# mixed precision for extra speed-up
precision: 16-mixed
# perform a validation loop every N training epochs
check_val_every_n_epoch: 1
# set True to to ensure deterministic results
# makes training slower but gives more reproducibility than just setting seeds
deterministic: False
gradient_clip_val: 5.0
defaults:
- default
accelerator: gpu
devices: 1
defaults:
- default
accelerator: mps
devices: 1
import tempfile
from argparse import Namespace
from pathlib import Path
import gradio as gr
import soundfile as sf
import torch
from matcha.cli import (
MATCHA_URLS,
VOCODER_URLS,
assert_model_downloaded,
get_device,
load_matcha,
load_vocoder,
process_text,
to_waveform,
)
from matcha.utils.utils import get_user_data_dir, plot_tensor
LOCATION = Path(get_user_data_dir())
args = Namespace(
cpu=False,
model="matcha_vctk",
vocoder="hifigan_univ_v1",
spk=0,
)
CURRENTLY_LOADED_MODEL = args.model
def MATCHA_TTS_LOC(x):
return LOCATION / f"{x}.ckpt"
def VOCODER_LOC(x):
return LOCATION / f"{x}"
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
RADIO_OPTIONS = {
"Multi Speaker (VCTK)": {
"model": "matcha_vctk",
"vocoder": "hifigan_univ_v1",
},
"Single Speaker (LJ Speech)": {
"model": "matcha_ljspeech",
"vocoder": "hifigan_T2_v1",
},
}
# Ensure all the required models are downloaded
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
device = get_device(args)
# Load default model
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
def load_model(model_name, vocoder_name):
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
return model, vocoder, denoiser
def load_model_ui(model_type, textbox):
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != model_name:
model, vocoder, denoiser = load_model(model_name, vocoder_name)
CURRENTLY_LOADED_MODEL = model_name
if model_name == "matcha_ljspeech":
spk_slider = gr.update(visible=False, value=-1)
single_speaker_examples = gr.update(visible=True)
multi_speaker_examples = gr.update(visible=False)
length_scale = gr.update(value=0.95)
else:
spk_slider = gr.update(visible=True, value=0)
single_speaker_examples = gr.update(visible=False)
multi_speaker_examples = gr.update(visible=True)
length_scale = gr.update(value=0.85)
return (
textbox,
gr.update(interactive=True),
spk_slider,
single_speaker_examples,
multi_speaker_examples,
length_scale,
)
@torch.inference_mode()
def process_text_gradio(text):
output = process_text(1, text, device)
return output["x_phones"][1::2], output["x"], output["x_lengths"]
@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
output = model.synthesise(
text,
text_length,
n_timesteps=n_timesteps,
temperature=temperature,
spks=spk,
length_scale=length_scale,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
sf.write(fp.name, output["waveform"], 22050, "PCM_24")
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
CURRENTLY_LOADED_MODEL = "matcha_vctk"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
global model, vocoder, denoiser # pylint: disable=global-statement
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
phones, text, text_lengths = process_text_gradio(text)
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
return phones, audio, mel_spectrogram
def main():
description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching
### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/)
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
* Is probabilistic
* Has compact memory footprint
* Sounds highly natural
* Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models.
Cached examples are available at the bottom of the page.
"""
with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo:
processed_text = gr.State(value=None)
processed_text_len = gr.State(value=None)
with gr.Box():
with gr.Row():
gr.Markdown(description, scale=3)
with gr.Column():
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
gr.HTML(html)
with gr.Box():
radio_options = list(RADIO_OPTIONS.keys())
model_type = gr.Radio(
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
)
with gr.Row():
gr.Markdown("# Text Input")
with gr.Row():
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
spk_slider = gr.Slider(
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
)
with gr.Row():
gr.Markdown("### Hyper parameters")
with gr.Row():
n_timesteps = gr.Slider(
label="Number of ODE steps",
minimum=1,
maximum=100,
step=1,
value=10,
interactive=True,
)
length_scale = gr.Slider(
label="Length scale (Speaking rate)",
minimum=0.5,
maximum=1.5,
step=0.05,
value=1.0,
interactive=True,
)
mel_temp = gr.Slider(
label="Sampling temperature",
minimum=0.00,
maximum=2.001,
step=0.16675,
value=0.667,
interactive=True,
)
synth_btn = gr.Button("Synthesise")
with gr.Box():
with gr.Row():
gr.Markdown("### Phonetised text")
phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text")
with gr.Box():
with gr.Row():
mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram")
# with gr.Row():
audio = gr.Audio(interactive=False, label="Audio")
with gr.Row(visible=False) as example_row_lj_speech:
examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
50,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
2,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
4,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
10,
0.677,
0.95,
],
[
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
50,
0.677,
0.95,
],
[
"The narrative of these events is based largely on the recollections of the participants.",
10,
0.677,
0.95,
],
[
"The jury did not believe him, and the verdict was for the defendants.",
10,
0.677,
0.95,
],
],
fn=ljspeech_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
)
with gr.Row() as example_row_multispeaker:
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
examples=[
[
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
0,
],
[
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
10,
0.677,
0.85,
16,
],
[
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
44,
],
[
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
50,
0.677,
0.85,
45,
],
[
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
4,
0.677,
0.85,
58,
],
],
fn=multispeaker_example_cacher,
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[phonetised_text, audio, mel_spectrogram],
cache_examples=True,
label="Multi Speaker Examples",
)
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
load_model_ui,
inputs=[model_type, text],
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
)
synth_btn.click(
fn=process_text_gradio,
inputs=[
text,
],
outputs=[phonetised_text, processed_text, processed_text_len],
api_name="matcha_tts",
queue=True,
).then(
fn=synthesise_mel,
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
outputs=[audio, mel_spectrogram],
)
demo.queue().launch(share=True)
if __name__ == "__main__":
main()
import argparse
import datetime as dt
import os
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
import torch
from matcha.hifigan.config import v1
from matcha.hifigan.denoiser import Denoiser
from matcha.hifigan.env import AttrDict
from matcha.hifigan.models import Generator as HiFiGAN
from matcha.models.matcha_tts import MatchaTTS
from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
MATCHA_URLS = {
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
}
VOCODER_URLS = {
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
}
MULTISPEAKER_MODEL = {
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
}
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
def plot_spectrogram_to_numpy(spectrogram, filename):
fig, ax = plt.subplots(figsize=(12, 3))
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.title("Synthesised Mel-Spectrogram")
fig.canvas.draw()
plt.savefig(filename)
def process_text(i: int, text: str, device: torch.device):
print(f"[{i}] - Input text: {text}")
x = torch.tensor(
intersperse(text_to_sequence(text, ["english_cleaners2"])[0], 0),
dtype=torch.long,
device=device,
)[None]
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
x_phones = sequence_to_text(x.squeeze(0).tolist())
print(f"[{i}] - Phonetised text: {x_phones[1::2]}")
return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones}
def get_texts(args):
if args.text:
texts = [args.text]
else:
with open(args.file, encoding="utf-8") as f:
texts = f.readlines()
return texts
def assert_required_models_available(args):
save_dir = get_user_data_dir()
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
model_path = args.checkpoint_path
else:
model_path = save_dir / f"{args.model}.ckpt"
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
vocoder_path = save_dir / f"{args.vocoder}"
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
return {"matcha": model_path, "vocoder": vocoder_path}
def load_hifigan(checkpoint_path, device):
h = AttrDict(v1)
hifigan = HiFiGAN(h).to(device)
hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
_ = hifigan.eval()
hifigan.remove_weight_norm()
return hifigan
def load_vocoder(vocoder_name, checkpoint_path, device):
print(f"[!] Loading {vocoder_name}!")
vocoder = None
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
vocoder = load_hifigan(checkpoint_path, device)
else:
raise NotImplementedError(
f"Vocoder {vocoder_name} not implemented! define a load_<<vocoder_name>> method for it"
)
denoiser = Denoiser(vocoder, mode="zeros")
print(f"[+] {vocoder_name} loaded!")
return vocoder, denoiser
def load_matcha(model_name, checkpoint_path, device):
print(f"[!] Loading {model_name}!")
model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
_ = model.eval()
print(f"[+] {model_name} loaded!")
return model
def to_waveform(mel, vocoder, denoiser=None, denoiser_strength=0.00025):
audio = vocoder(mel).clamp(-1, 1)
if denoiser is not None:
audio = denoiser(audio.squeeze(), strength=denoiser_strength).cpu().squeeze()
return audio.cpu().squeeze()
def save_to_folder(filename: str, output: dict, folder: str):
folder = Path(folder)
folder.mkdir(exist_ok=True, parents=True)
plot_spectrogram_to_numpy(np.array(output["mel"].squeeze().float().cpu()), f"{filename}.png")
np.save(folder / f"{filename}", output["mel"].cpu().numpy())
sf.write(folder / f"{filename}.wav", output["waveform"], 22050, "PCM_24")
return folder.resolve() / f"{filename}.wav"
def validate_args(args):
assert (
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.steps > 0, "Number of ODE steps must be greater than 0"
if args.checkpoint_path is None:
# When using pretrained models
if args.model in SINGLESPEAKER_MODEL:
args = validate_args_for_single_speaker_model(args)
if args.model in MULTISPEAKER_MODEL:
args = validate_args_for_multispeaker_model(args)
else:
# When using a custom model
if args.vocoder != "hifigan_univ_v1":
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
warnings.warn(warn_, UserWarning)
if args.speaking_rate is None:
args.speaking_rate = 1.0
if args.batched:
assert args.batch_size > 0, "Batch size must be greater than 0"
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
return args
def validate_args_for_multispeaker_model(args):
if args.vocoder is not None:
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
if args.spk is not None:
assert (
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
), f"Speaker ID must be between {spk_range} for this model."
else:
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
warnings.warn(warn_, UserWarning)
args.spk = available_spk_id
return args
def validate_args_for_single_speaker_model(args):
if args.vocoder is not None:
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
warnings.warn(warn_, UserWarning)
else:
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
if args.speaking_rate is None:
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
warnings.warn(warn_, UserWarning)
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
return args
@torch.inference_mode()
def cli():
parser = argparse.ArgumentParser(
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
)
parser.add_argument(
"--model",
type=str,
default="matcha_ljspeech",
help="Model to use",
choices=MATCHA_URLS.keys(),
)
parser.add_argument(
"--checkpoint_path",
type=str,
default=None,
help="Path to the custom model checkpoint",
)
parser.add_argument(
"--vocoder",
type=str,
default=None,
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
choices=VOCODER_URLS.keys(),
)
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
parser.add_argument(
"--temperature",
type=float,
default=0.667,
help="Variance of the x0 noise (default: 0.667)",
)
parser.add_argument(
"--speaking_rate",
type=float,
default=None,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
parser.add_argument("--cpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
parser.add_argument(
"--denoiser_strength",
type=float,
default=0.00025,
help="Strength of the vocoder bias denoiser (default: 0.00025)",
)
parser.add_argument(
"--output_folder",
type=str,
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
)
args = parser.parse_args()
args = validate_args(args)
device = get_device(args)
print_config(args)
paths = assert_required_models_available(args)
if args.checkpoint_path is not None:
print(f"[🍵] Loading custom model from {args.checkpoint_path}")
paths["matcha"] = args.checkpoint_path
args.model = "custom_model"
model = load_matcha(args.model, paths["matcha"], device)
vocoder, denoiser = load_vocoder(args.vocoder, paths["vocoder"], device)
texts = get_texts(args)
spk = torch.tensor([args.spk], device=device, dtype=torch.long) if args.spk is not None else None
if len(texts) == 1 or not args.batched:
unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk)
else:
batched_synthesis(args, device, model, vocoder, denoiser, texts, spk)
class BatchedSynthesisDataset(torch.utils.data.Dataset):
def __init__(self, processed_texts):
self.processed_texts = processed_texts
def __len__(self):
return len(self.processed_texts)
def __getitem__(self, idx):
return self.processed_texts[idx]
def batched_collate_fn(batch):
x = []
x_lengths = []
for b in batch:
x.append(b["x"].squeeze(0))
x_lengths.append(b["x_lengths"])
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
x_lengths = torch.concat(x_lengths, dim=0)
return {"x": x, "x_lengths": x_lengths}
def batched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
total_rtf = []
total_rtf_w = []
processed_text = [process_text(i, text, "cpu") for i, text in enumerate(texts)]
dataloader = torch.utils.data.DataLoader(
BatchedSynthesisDataset(processed_text),
batch_size=args.batch_size,
collate_fn=batched_collate_fn,
num_workers=8,
)
for i, batch in enumerate(dataloader):
i = i + 1
start_t = dt.datetime.now()
b = batch["x"].shape[0]
output = model.synthesise(
batch["x"].to(device),
batch["x_lengths"].to(device),
n_timesteps=args.steps,
temperature=args.temperature,
spks=spk.expand(b) if spk is not None else spk,
length_scale=args.speaking_rate,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser, args.denoiser_strength)
t = (dt.datetime.now() - start_t).total_seconds()
rtf_w = t * 22050 / (output["waveform"].shape[-1])
print(f"[🍵-Batch: {i}] Matcha-TTS RTF: {output['rtf']:.4f}")
print(f"[🍵-Batch: {i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}")
total_rtf.append(output["rtf"])
total_rtf_w.append(rtf_w)
for j in range(output["mel"].shape[0]):
base_name = f"utterance_{j:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{j:03d}"
length = output["mel_lengths"][j]
new_dict = {"mel": output["mel"][j][:, :length], "waveform": output["waveform"][j][: length * 256]}
location = save_to_folder(base_name, new_dict, args.output_folder)
print(f"[🍵-{j}] Waveform saved: {location}")
print("".join(["="] * 100))
print(f"[🍵] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} ± {np.std(total_rtf)}")
print(f"[🍵] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} ± {np.std(total_rtf_w)}")
print("[🍵] Enjoy the freshly whisked 🍵 Matcha-TTS!")
def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
total_rtf = []
total_rtf_w = []
for i, text in enumerate(texts):
i = i + 1
base_name = f"utterance_{i:03d}_speaker_{args.spk:03d}" if args.spk is not None else f"utterance_{i:03d}"
print("".join(["="] * 100))
text = text.strip()
text_processed = process_text(i, text, device)
print(f"[🍵] Whisking Matcha-T(ea)TS for: {i}")
start_t = dt.datetime.now()
output = model.synthesise(
text_processed["x"],
text_processed["x_lengths"],
n_timesteps=args.steps,
temperature=args.temperature,
spks=spk,
length_scale=args.speaking_rate,
)
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser, args.denoiser_strength)
# RTF with HiFiGAN
t = (dt.datetime.now() - start_t).total_seconds()
rtf_w = t * 22050 / (output["waveform"].shape[-1])
print(f"[🍵-{i}] Matcha-TTS RTF: {output['rtf']:.4f}")
print(f"[🍵-{i}] Matcha-TTS + VOCODER RTF: {rtf_w:.4f}")
total_rtf.append(output["rtf"])
total_rtf_w.append(rtf_w)
location = save_to_folder(base_name, output, args.output_folder)
print(f"[+] Waveform saved: {location}")
print("".join(["="] * 100))
print(f"[🍵] Average Matcha-TTS RTF: {np.mean(total_rtf):.4f} ± {np.std(total_rtf)}")
print(f"[🍵] Average Matcha-TTS + VOCODER RTF: {np.mean(total_rtf_w):.4f} ± {np.std(total_rtf_w)}")
print("[🍵] Enjoy the freshly whisked 🍵 Matcha-TTS!")
def print_config(args):
print("[!] Configurations: ")
print(f"\t- Model: {args.model}")
print(f"\t- Vocoder: {args.vocoder}")
print(f"\t- Temperature: {args.temperature}")
print(f"\t- Speaking rate: {args.speaking_rate}")
print(f"\t- Number of ODE steps: {args.steps}")
print(f"\t- Speaker: {args.spk}")
def get_device(args):
if torch.cuda.is_available() and not args.cpu:
print("[+] GPU Available! Using GPU")
device = torch.device("cuda")
else:
print("[-] GPU not available or forced CPU run! Using CPU")
device = torch.device("cpu")
return device
if __name__ == "__main__":
cli()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment