# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import oneflow as flow import oneflow.unittest from omegaconf import DictConfig from oneflow import nn from libai.layers import Linear from libai.utils import distributed as dist class TestLinear(flow.unittest.TestCase): @unittest.skipIf(not flow.cuda.is_available(), "only test gpu cases") @flow.unittest.skip_unless_1n1d() def test_nn_linear(self): dist.setup_dist_util( DictConfig( dict( data_parallel_size=1, tensor_parallel_size=1, pipeline_parallel_size=1, ) ) ) inputs = flow.rand(8, 8, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) weight = flow.rand(4, 8, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) bias = flow.rand(4, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) nn_linear = nn.Linear(8, 4).to("cuda") nn_linear.weight.data.copy_(dist.ttol(weight).to("cuda")) nn_linear.bias.data.copy_(dist.ttol(bias).to("cuda")) nn_output = nn_linear(dist.ttol(inputs).to("cuda")) libai_linear = Linear(8, 4) libai_linear.weight.data.copy_(weight) libai_linear.bias.data.copy_(bias) libai_output = libai_linear(inputs) self.assertTrue(np.allclose(nn_output.cpu().numpy(), dist.tton(libai_output), 1e-7, 1e-7)) @flow.unittest.skip_unless_1n2d() def test_col_parallel_linear(self): dist.setup_dist_util( DictConfig( dict( data_parallel_size=1, tensor_parallel_size=2, pipeline_parallel_size=1, ) ) ) inputs = flow.rand(8, 8, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) weight = flow.rand(4, 8, sbp=flow.sbp.split(0), placement=dist.get_layer_placement(0)) bias = flow.rand(4, sbp=flow.sbp.split(0), placement=dist.get_layer_placement(0)) nn_linear = nn.Linear(8, 4).to("cuda") nn_linear.weight.data.copy_(dist.ttol(weight).to("cuda")) nn_linear.bias.data.copy_(dist.ttol(bias).to("cuda")) nn_output = nn_linear(dist.ttol(inputs).to("cuda")) libai_linear = Linear(8, 4, parallel="col") libai_linear.weight.data.copy_(weight) libai_linear.bias.data.copy_(bias) libai_output = libai_linear(inputs) self.assertTrue(np.allclose(nn_output.cpu().numpy(), dist.tton(libai_output), 1e-7, 1e-7)) @flow.unittest.skip_unless_1n2d() def test_row_parallel_linear(self): dist.setup_dist_util( DictConfig( dict( data_parallel_size=1, tensor_parallel_size=2, pipeline_parallel_size=1, ) ) ) inputs = flow.rand(8, 8, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) weight = flow.rand(4, 8, sbp=flow.sbp.split(1), placement=dist.get_layer_placement(0)) bias = flow.rand(4, sbp=flow.sbp.broadcast, placement=dist.get_layer_placement(0)) # move local tensor to cuda nn_linear = nn.Linear(8, 4).to("cuda") nn_linear.weight.data.copy_(dist.ttol(weight).to("cuda")) nn_linear.bias.data.copy_(dist.ttol(bias).to("cuda")) nn_output = nn_linear(dist.ttol(inputs).to("cuda")) libai_linear = Linear(8, 4, parallel="row") libai_linear.weight.data.copy_(weight) libai_linear.bias.data.copy_(bias) libai_output = libai_linear(inputs) self.assertTrue(np.allclose(nn_output.cpu().numpy(), dist.tton(libai_output), 1e-7, 1e-7))