import torch from transformers import AutoModelForCausalLM from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM from deepseek_vl2.utils.io import load_pil_images # specify the path to the model model_path = "/home/wanglch/DeepSeek-VL2/deepseek-vl2-tiny/" vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() ## single image conversation example ## Please note that <|ref|> and <|/ref|> are designed specifically for the object localization feature. These special tokens are not required for normal conversations. ## If you would like to experience the grounded captioning functionality (responses that include both object localization and reasoning), you need to add the special token <|grounding|> at the beginning of the prompt. Examples could be found in Figure 9 of our paper. conversation = [ { "role": "<|User|>", "content": "\n<|ref|>The giraffe at the back.<|/ref|>.", "images": ["./images/visual_grounding_1.jpeg"], }, {"role": "<|Assistant|>", "content": ""}, ] # load images and prepare for inputs pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True, system_prompt="" ).to(vl_gpt.device) # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # run the model to get the response outputs = vl_gpt.language.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False) print(f"{prepare_inputs['sft_format'][0]}", answer)